```
MAVSHIPS 0967-034-9010
    (F0r:52y ghoz0)

\section*{TECHNICAL MANUAL} for
COMPARATORCONVERTER GROUP AN/URA-17

HOFPMAN ELRCTRONICS CORPORATION MIITARY PRODUCTS DIVISION LOS ANGELES 7, CALIFORNIA

DEPARTMENT OF THE NAVY bureau of Ships vorschriftenstclle Ostsee

Vereinnahmt

\title{
TECHNICAL MANUAL for COMPARATORCONVERTER GROUP AN/URA-17
}

HOFFMAN ELECTRONICS CORPORATION MILITARY PRODUCTS DIVISION LOS ANGELES 7, CALIFORNIA

7 APRIL 1961
\begin{tabular}{c}
\begin{tabular}{c} 
Marinearsenal Kiel \\
Vereinnzhmt anter
\end{tabular} \\
\hline Zug..Nr.: 6357 \\
\hline
\end{tabular}

Baugr: :.........................

DEPARTMENT OF THE NAVY BUREAU OF SHIPS

\section*{LIST OF EFFECTIVE PAGES}
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{c} 
PAGE \\
NUMBERS
\end{tabular} & \begin{tabular}{c} 
CHANGE DN \\
EFFECT
\end{tabular} & \multicolumn{1}{|c|}{\begin{tabular}{c} 
PAGE \\
NUMBERS
\end{tabular}} & \begin{tabular}{c} 
CHANGE \(\mathbb{N}\) \\
EFFECT
\end{tabular} \\
\hline Title Page & Original & \(4-0\) to \(4-7\) & Original \\
ii to ix & Original & \(5-0\) to \(5-19\) & Original \\
\(1-0\) to \(1-8\) & Original & \(6-0\) to \(6-15 / 6-16\) & Original \\
\(2-1\) to \(2-12\) & Original & \(7-1\) to \(7-22\) & Original \\
\(3-1\) to \(3-7\) & Original & \(1-1\) to \(i-4\) & Orlginal \\
& & & \\
\hline
\end{tabular}

DEPAIsTMENT OF THE NAVY
BUREAU OF SHIPS WASHINGTON 25, D.C.

Fram: Chief, Bureau of Ships
TO: All Activities concerned with the Installation, Operation, and Maintenance of the Subject Equipment

Subj: Technical Manual for Comparator-Converter Group AN/URA-17, NAVSHIPS 94028
1. This is the Technical Mamal for the subject equipment and is in effect upon receipt.
2. When superseded by a later edition, this publication shall be destroyed.
3. Extracts fram this publication may be made to facilitate the preparation of other Department of Defense publications.
4. Errors found in this publication (other than obvious typographical errors), which have not been corrected by means of Teruporary Corrections or Permanent Changes should be reported. Such report should include the coumlete title of the publication and the publication rumber (short title); identify the page and line or figure and location of the error; and be forvarded to the Electronics Publications Section of the Bureau of Ships.
5. All Navy requests for NAVSKIPS electronics publications listed in the current issue of NAVSANDA Publication 2002 "Requisitioning Guide and Index of Forms and Publications", Cognizance Symbol I, or In a subsequent issue of the Electronics Information Bulletin should be directed to the appropriate Forms and Publications Supply Point.
R. K. JAMES

Chief of Bureau

RECORD OF CORRECTIONS MADE
\begin{tabular}{|l|l|l|l|}
\hline CHANGE NO. & DATE & FIELD CHANGE NO. & SIGNATURE \\
\hline & & & \\
\hline
\end{tabular}

\section*{TABLE OF CONTENTS}

\section*{SECTION 1--GENERAL INFORMATION}

SECTION 2--INSTALLATION (Continued)
Paragraph ..... Page
1-1. Equipment Illustration ..... 1-1
1-2. Functional Description ..... 1-1
1-3. Description of the Major Unit ..... 1-1
1-4. Factory or Field Changes ..... 1-3
1-5. Quick Reference Data ..... 1-3
a. AF Input Signal ..... 1-3
b. Operating Frequencies ..... 1-3
c. Maximum Keying Speeds ..... 1-3
d. Output ..... 1-3
e. Power Source Requirements ..... 1-3
1-6. Equipment Lists ..... 1-3
a. Equipment Supplied ..... 1-3
b. Equipment and Publications Required but not Supplied. . ..... 1-3
c. Test Equipment Required but not Supplied ..... 1-3
d. Shipping Data ..... 1-3
e. Equipment Similarities ..... 1-3
f. Transistor and Diode Complement ..... 1-3
SECTION 2--INSTALLATION
2-1. Unpacking and Handling ..... 2-1
2-2. Power Requirements and Distribution ..... 2-1
2-3. Installation Layout ..... 2-1
2-4. Installation Requirements ..... 2-1
a. Outline Drawings ..... 2-1
b. Equipment Mounting ..... 2-1
(1) Table-Mounting the AN/URA-17 ..... 2-1
(2) Table-Mounting the EV~483/URA-17 ..... 2-1
(3) Rack-Mounting the AN/URA-17 ..... 2-2
(4) Rack-Mounting the CV-483/URA-17 ..... 2-2
c. Interconnection ..... 2-2
(1) Interconnecting Cables for Single-Receiver Operation ..... 2-3
(2) Interconnecting Cables for Diversity Operation. ..... 2-3
(3) Audio Input Lines ..... 2-3
(4) Power Transformer Connections ..... 2-3

Paragraph Page
d. Cable Assembly ..... 2-4
(1) Attaching UG-88D/U Connectors to RG-58A/U Coaxial Cable .......... 2-4
(2) Attaching MS Connector to MCOS-2 Cable ..... 2-4
(3) Attaching MS Connectors to TTHFWA-1-1/2 Cable ..... 2-6
2-5. Inspection and Adjustments ..... 2-7
a. Mechanical and Electrical Checks ..... 2-7
(1) Mechanical Checks ..... 2-7
(2) Electrical Checks ..... 2-9
(a) CRT Adjustment Controls ..... 2-9
(b) Pre-Operational Check ..... 2-9
(c) Operational Check ..... -9
2-6. Preparation for Reshipment ..... 2-9
a. InterconnectIng Cables ..... 2-9
b. Dismounting Equipment ..... 2-9
c. Packing ..... 2-9
SECTION 3--OPERATOR'S SECTION
3-1. Funciional Operation ..... 3-1
a. General ..... 3-1
b. Frequency-Shift Method of Communication ..... 3-1
c. Diversity Operation ..... 3-1
d. Single-Receiver Operation ..... 3-1
3-2. Operating Procedures ..... 3-1
a. General ..... 3-1
b. Description of Controls ..... 3-1
c. Sequence of Operation ..... 3-1
(1) Before Use ..... 3-1
(2) During Use ..... 3-1
(3) Secure ..... 3-1
d. Indicator Presentations ..... 3-2
e. ning Adjustments. ..... 3-2
1.. Single-Receiver C. 'ation ..... 3-2
(2) Diversity Operation ..... 3-3
f. Illustrations ..... 3-3
(1) Controls ..... 3-3
(2) Indicator Presentation ..... 3-3
g. Modes of Operation ..... 3-3
(1) Single-Receiver Operation ..... 3-3

\section*{SECTION 3--OPERATOR'S SECTION (Continued)}
Paragraph Page
(2) Diversity Operation ..... 3-3
3-3. Summary of Operating Procedures ..... 3-4
a. Single-Receiver Operation ..... 3-4
b. To Secure ..... 3-4
c. Diversity Operation ..... 3-4
d. To Secure ..... 3-5
3-4. Operator's Maintenance ..... 3-5
a. General ..... 3-5
b. Routine Check Chart ..... 3-6
c. Daily Check for Correct Diversity Operation ..... 3-6
d. Indicator Lamp Replacement. ..... 3-7
e. Fuse Replacement ..... 3-7
f. Emergency Maintenance ..... 3-7
SECTION 4--PRINCIPLES OF OPERATION
4-1. Overall FunctionalDescription4-0
a. General ..... 4-0
b. Diversity Operation ..... 4-0
c. Single-Receiver Operation ..... 4-0
d. Simplified Block Diagram ..... 4-0
e. Functional Block Diagram ..... 4-0
4-2. Functional Sections ..... 4-1
a. General ..... 4-1
b. Signal Processing Circuits ..... 4-1
(1) Bandpass Filters ..... 4-1
(2) Limiter ..... 4-1
(3) Discriminators ..... 4-1
(4) Mark-Space Amplifiers ..... 4-3
(5) Detector ..... 4-4
(6) Keying Filter ..... 4-4
c. Keyer Circuits. ..... 4-4
(1) DC Differential
Amplifier ..... 4-4
(2) Axis Restorer ..... 4-4
(3) Comparator ..... 4-5
(4) DC Limiter ..... 4-5
(5) Loop Keyer ..... 4-5
(6) Mark Lock-Up ..... 4-6
(7) Tuning Indicator ..... 4-6
d. Power Supplies ..... 4-6
(1) +48 Volt Supply ..... 4-6
(2) -48 Volt Sipply. ..... 4-6
(3) -560 Volt Supply ..... 4-6

\section*{SECTION 5--TROUBLE-SHOOTING}
Paragraph Page
5-1. General ..... 5-0
5-2. Test Equipment and Special Tools. ..... 5-0
a. Test Equipment ..... 5-0
b. Special Tools ..... 5-0
5-3. Overall Trouble-Slooting ..... 5-0
a. Preliminary Check. ..... 5-0
b. Test Equipment and Special Tools ..... 5-1
c. Control Settings ..... 5-1
d. System Trouble-Shooting Chart ..... 5-1
(1) Malfunction During Single- Receiver Operation ..... 5-1
(2) Malsunction During Diversity Operation ..... 5-2
5-4. Functional Section Trouble- Shooting ..... 5-2
a. General ..... 5-2
b. Signal Processing Circuits Trouble-Shooting ..... 5-2
(1) Preliminary Check ..... 5-2
(2) Test Equipment and Special Tools ..... 5-3
(a) Test Equipment ..... 5-3
(b) Special Tools ..... 5-3
(3) Control Settings ..... 5-3
(4) Illustrations ..... 5-3
(a) Test Points ..... 5-3
(b) Schematic Diagrams ..... 5-3
(c) Voltage and
Resistance Diagram ..... 5-3
(d) Signal Tracing Oscilloscope Patterns ..... 5-5
(e) Alignment of the Converter after Trouble-Slooting ..... 5-5
c. Keyer Circuits Trouble- Shooting ..... 5-5
(1) Preliminary Check ..... 5-5
(2) Test Equipment and Special Tools ..... 5-5
(a) Test Equipment ..... 5-5
(b) Special Tools ..... 5-5
(3) Control Settings ..... 5-6
(4) Illustrations ..... 5-6
(a) Test Points ..... 5-6

\section*{SECTION 5--TROUBLE-SHOOTING (Continued)}

SECTION 6--REPAIR (Continued)
Paragraph Page
(b) Schematic Diagrams. ..... 5-6
(c) Voltage and Resist - ance Diagram..... 5-6
(d) Signal Tracing OscilloscopePatterns .......... 5-9
(e) Alignment of the Con- verter after Trouble-Shooting, .. 5-9
d. Power Supplies Trouble-
Shooting ..... 5-9
(1) Preliminary Check ..... 5-9
(2) Test Equipment and Special Tools ..... 5-9
(a) Test, Equipment ..... 5-9
(b) Cpecial Tools ..... 5-9
(3) Control Settings ..... 5-17
(4) Illustrations ..... 5-17
(a) Test Points ..... 5-17
(b) Schematic Diagrams. ..... 5-17
(c) Voltage and Resist- ance Diagram ..... 5-17
(d) Adjustment of Power Supplies ..... 5-17
5-5. Typical Troubles ..... 5-17
5-6. Location of Parts ..... 5-17
SECTION 6--REPAIR
6-1. Failure Report. ..... 6-0
6-2. Tuning and Adjustment ..... 6-0
a. General ..... 6-0
b. Standards ..... 6-0
c. Test Equipment and Special Tools ..... 6-0
d. Special Jigs ..... 6-0
e. Control Settings ..... 6-0
f. Power Supply Adjustments ..... 6-1
(1) +48 Volt Supply ..... 6-1
(2) -48 Volt Supply ..... 6-1
g. Cathode-Ray Tube Adjustments ..... 6-1
h. Mark and Space Gain Control Adjustments ..... 6-1
1. DC Differentlal Amplifier Adjustments. ..... 6-2
6-3. Removal, Adjustment, Repair, and Reassembly ..... 6-2
Paragraph ..... Page
a. General ..... 6-2
b. Illustrations ..... 6-2
(1) Photographs ..... 6-2
(2) Wiring Diagrams ..... 6-2
c. Removal and Reassembly ..... 6-2
(1) Chassis Removal ..... 6-2
(2) Transformer and Filter Replacement ..... 6-3
(3) Printed Circuit Board Replacement ..... 6-3
(4) Receptacle l’anel Removal ..... 6-3
d. Adjustment and Repair. ..... 6-3
(1) Test Equipment and Special Tools ..... 6-3
(2) Transistor Replacement ..... 6-3
(3) Tuning Indicator Cathode- Ray Tube Replacement ..... 6-3
(4) Transistor Socket Replacement ..... 6-3
(5) Rotary Switch Repairs ..... 6-3
(a) Replacing Defective Switch Wafer ...... 6-3
(b) Replacing Defective Switch ..... 6-4
(6) Bandpass Filter Tests ..... 6-4
(a) Wide-Shift Filter FL1 ..... 6-4
(b) Narrow-Shift Filter (Part of \(\mathrm{Z1}\) ) ..... 6-6
(7) Discriminator Tests ..... 6-6
(a) Wide-Shift Discrimi- nator ..... 6-6
(b) Narrow-Shift Discriminator ..... 6-9
(8) Low-Pass Keying Filter Tests ..... 6-9
SECTION 7--PARTS LIST
7-1. Introduction ..... 7-1
7-2. Maintenance Parts List. ..... 7-1
7-3. List of Manufacturers ..... 7-1
7-4. Notes ..... 7-1

\section*{LIST OF ILLUSTRATIONS}

SECTION 1-GENERAL INFORMATION


SECTION 6--REPAIR

SECTION 6--REPAIR (Continued)
\begin{tabular}{ccr} 
Figure & & Page \\
& & \\
6-4. & Diagram ..................... & \(6-11 / 6-12\) \\
& Frequency Shift Converter \\
CV-483/URA-17, Right-Hand \\
& Terminal Board, Wiring
\end{tabular},

\section*{LIST OF TABLES}

SECTION 1--GENERAL INFORMATION
\begin{tabular}{|c|c|}
\hline Table & \\
\hline 1-1. & Comparator-Converter Group AN/URA-17, Equipment Sipplied \(\qquad\) \\
\hline 1-2. & Comparator-Converter Group AN/URA-17, Equipment and Publications Required but not Supplied \\
\hline 1-3. & Comparator-Converter Group AN/URA-17, Test Equipment Required but not Supplied........ \\
\hline 1-4. & Comparator-Converter Group AN/URA-17, Shipping Data..... \\
\hline 1-5. & Frequency Shift Converter CV-483/URA-17, Transistor Complement ................... \\
\hline 1-6. & Frequency Shift Converter CV-483/URA-17, Diode Complement \\
\hline
\end{tabular}

SECTION 2--INSTALLATION

2-1. Cabling Required for SingleReceiver Operation.............. 2-5
2-2. Cabling of Each Converter for Diversity Operation.............. 2-7
2m3. Frequency Shift Converter
\(\quad\) CV-483/URA-17, CRT Adjust-

\(\quad\) ment Controls.................... 2-8
SECTION 3--OPERATOR'S SECTION
3-1. Frequency Shift Converter CV-483/URA-17, Operating Controls ......................... 3-2
3-2. Operator's Check Chart .......... 3-5
3-3. Comparator-Converter Group AN/URA-17, Operator's Trouble-Shooting Chart ........ 3-6

SECTION 5--TROUBLE-SHOOTING
Table Page
\begin{tabular}{|c|c|c|}
\hline 5-1. & Frequency Shift Converter CV-483/URA-17, System Trouble-Shooting Chart . & 5-1 \\
\hline 5-2. & Frequency Shift Converter CV-483/URA-17, Signal Processing Circuits Functional Section Trouble-Shooting Chart . & 5-4 \\
\hline 5-3. & Frequency Shift Converter CV-483/URA-17, Keyer Circuits Functional Section, Trouble-Strooting Chart ......... & 5-9 \\
\hline 5-4. & \begin{tabular}{l}
Frequency Shift Converter \\
CV-483/URA-17, Power Supplies \\
Functional Section TroubleShooting Chart ...................
\end{tabular} & 5-13 \\
\hline 5-5. & Signal Tracing Oscilloscope Patterns \(\qquad\) & 5-18 \\
\hline 5-6. & Frequency Shift Converter CV-483/URA-17, Typical Troubles & 5-19 \\
\hline
\end{tabular}

SECTION 6--REPAIR
6-1. Adjustments after Transistor \(\quad\) Replacements..................... 6-4
6-2. Filter Characteristics............ 6-5

\section*{SECTION 7--PARTS LIST}
-1. Comparator-Converter Group
AN/URA-17, Maintenance Parts List.7-1

7-2. Comparator-Converter Group AN/URA-17, List of Manufacturers ................... 7-22


RACK-MOUNTING BRACKETS (4)


UG-88D/U
CONNECTORS (6)


TABLE MOUNTING FEET (4)


MS3106A 14S-7P
CONNECTORS (2)
MS3106A 14S-7S
CONNECTORS (2)
MS3106A14S-95
CONNECTORS (2)

Figure 1-1. Comparator-Converter Group AN/URA-17, Equipment Supplied

\section*{SECTION 1}

\section*{general information}

\section*{1-1. EQUIPMENT ILLUSTRATION.}

Figure 1-1 illustrates Comparator-Converter Group AN/URA-17, Federal Stock No. F5820-4743975, the equipment supplied under Contract NObsr 81579.

\section*{1-2. FUNCTIONAL DESCRIPTION.}

Comparator-Converter Group AN/URA-17. hereinafter referred to as the AN/URA-17, provides a link in the receiving end of a frequency-shift communication system. In this system, teletype markspace characters are transmitted as rapid shifts above and below the center frequency of an If carrier. These frequency-shift-keyed (fsk) signals are translated by a standard communications receiver into frequency variations about a center frequency of 1000 or 2550 cycles per second (cps). The AN/URA-17 changes these frequency-shifted audio signals into dc mark-space pulses for operation of a loop heying circuit of an automatic recording device. This method of communication provides the noise reduction advantages of frequency modulation for coded teletype messages at apeeds to 400 words per minute.

The AN/URA-17 consists of two Frequency Shift Converters CV-483/URA-17, hereinafter referred to as converters. Either converter may be operated in a single-receiver fak receiving system or used together in combination with two receivers and a single teletype printer to provide a "diversity" receiving system. The diversity system makes use of the principles of space-diversity or fre-quency-diversity reception to eliminate severe sfgnal fading over long transmission distances.

In space-diversity operation, two receivers are tured to the same if carrier frequency but their recelving antennas are spaced several wavelengths apart. The advantage of this method of reception is that maximum fading of a given carrier frequency usually does not coincide in time at points so separated. The audio output of each receiver is applied to a separate converter.

In frequency-diversity operation, two receivers are tuned to different rf carrier frequencies, both contaloing the same mark-space modulation. The andio output of each receiver is applied to a sep-
arate converter. The advantage of this method of reception is that maximum fading of two different carrier frequencies seldom occurs at the same time in a given location. Two transmitting stations as well as two frequency channels are required. This method may be used when space limitations at the receiving site do not allow sufficient antenna separation for effective spacediversity operation.

During diversity operation, a comparator circuit in each converter continuously compares the two received signals, selecting the stronger signal for operation of the teletype printer. The teletype printer may be connected to either of the converter: When operating in a single-receiver system, the comparator circuits are inoperative.

\section*{1-3. DESCRIPTION OF THE MAJOR UNIT.}

Each converter is installed in a navy gray aluminum cabinet. A handle is provided on each side of the front panel and at each end of the back panel. The cabinet is equipped with ball-bearing drawer slides which lock in the fully withdrawn position (figure 1-2). When fully withdrawn, all chassis terminals and connections are visible and easily accessible.

All external cables are attached to the converter by means of connectors which match receptacles on a removable panel at the rear of the cabinet. This panel is sloped 30 degrees to allow easy access to the cable receptacles. The cable receptacles at the rear of the cabinet are connected to the chassis by a single cable and connector. This cable is equipped with a retractor which keeps the cable in place.

A tuning indicator (two-inch cathode-ray tube) is located in the center of the front panel of each converter to allow a quick visual check of receiver tuning. The tuning indicator uses a 60 cps sweep voltage. An external indicator may be connected to a receptacle on the rear panel, for use when the operator cannot see the converter tuning indicator while tuning the receiver.

The converters each operate from a power source of 105, 115 , or 125 volte, 50 to 400 cps ,


Figure 1-2. Frequency Shift Converter CV-483/URA-17, Top View, Chassis Fully Withdrawn
single phase ac. Except for the tuning indicator cathode-ray tube, only semiconduciors are used.

Brackets and mounting bolts are supplied (figure 1-1) for installation of the converters in standard 19 -inch racks. Feet for table-mounting a single converter and clamps for table-mounting two converters (one above the other) are also included.

\section*{1-4. FACTORY OR FIELD CHANGES.}

No factory or field changes have been made at this date.

1-5. QUICK REFERENCE DATA.
a. AF INPUT SIGNAL. - Operates from 600 ohm line, with input signals of 60 microwatts to 60 milliwatts power.
b. OPERATING FREQUENCIES. - Narrow shift, 1000 cps mean frequency; width of shift, 10 to 200 cps. Wide shift, 2550 cps mean frequency; width of shift, 200 to 1000 cps .
c. MAXIMUM KEYING SPEEDS. - 100 words per minute, single channel; 400 words per minute, when used in four-channel, time-division multiplex with each channel operating at 100 words per minute.
d. OUTPUT. - Keys 60 ma current in teletype printer de loop circuit.
e. POWER SOURCE REQUIREMENTS. Frequency Shift Converter CV-483/URA-17, 35 watts each, with source of 105 to 125 volts, 50 to 400 cps , single phase ac.

\section*{1-6. EQUIPMENT LISTS.}
a. EQUIPMENT SUPPLIED. - Table 1-1 lists equipment supplied.

\section*{b. EQUIPMENT AND PUBLICATIONS} REQUIRED BUT NOT SUPPLIED. - Table 1-2 lists equipment and publications required but not supplied.
c. TEST EQUIPMENT REQUIRED BUT NOT SUPPLIED. - Table 1-3 lists test equipment required but not supplied.
d. SHIPPING DATA. - Table 1-4 provides information covering the comr!ate equipment as packed for shipment.
e. EQUIPMENT SIMILARITIES. - ComparatorConverter Group AN/URA-1? performs functions similar to those of Comparator-Converter Group AN/URA-8. The AN/URA-17 uses semiconductors rather than vacuum tubes. The AN/URA-17 is not electrically or mechanically interchangeable with the AN/URA-8.
f. TRANSISTOR AND DIODE COMPLEMENT. Tables 1-5 and 1-6 list the transistor and diode complement.

TABLE 1-1. COMPARATOR-CONVERTER GROUP AN/URA-17. EQUIPMENT SUPPLIEC
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
QUANT \\
PER \\
EQUIP.
\end{tabular}} & \multicolumn{2}{|l|}{NOMENCLATURE} & \multicolumn{3}{|l|}{*OVERALL DIMENSIONS} & \multirow{2}{*}{*VOLUME} & \multirow{2}{*}{*WEIGHT} \\
\hline & NAME & DESIGNATION & HESGHT & WIDTH & DEPTH & & \\
\hline 2 & Frequency Shift Converter & CV-483/URA-17 & 3-15/32 & 16-11/16 & 18-7/8 & 0.63 & 26 \\
\hline 2 & Clamps for tablemounting AN/URA-17 & & 8 & 17-11/16 & 3-3/4 & 0.08 & 1.5 \\
\hline 8 & Feet for tablemounting Frequency Shift Converter CV-483/URA-17 & & 1/4 & 2-3/8 & 2-3/8 & 0.005 & 0.12 \\
\hline 4 & Bracket for rackmounting Frequency Shift Converter CV-483/URA-17 & & 3-15/32 & 1-5/32 & 8 & 0.007 & 0.75 \\
\hline 6 & Cable connector & UG-88D/U & & & & & \\
\hline 2 & Cable connector & MS3106A14S-78 & & & & & \\
\hline 2 & Cable connector & MS3106A14S-7P & & & & & \\
\hline 2 & Cable connector & MS3106A14S-98 & & & & & \\
\hline 2 & Technical manual & NAVSHIPS 94028 & & & & & \\
\hline
\end{tabular}
- Unless otherwise stated, dimensions are in inches, volume in cubic feet, weight in pounds.

TABLE 1-2. COMPARATOR-CONVERTER GROUP AN/URA-17, EQUIPMENT AND PUBLICATIONS REQUIRED BUT NOT SUPPLIED
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
QUANT. \\
PER \\
EQUIP.
\end{tabular}} & \multicolumn{2}{|c|}{NOMENCLATURE} & \multirow[t]{2}{*}{REQUIRED
USE} & \multirow[t]{2}{*}{\begin{tabular}{l}
REQUIRED \\
CHARACTERISTICS
\end{tabular}} \\
\hline & NAME & DESIGNATION & & \\
\hline 2 & Standard navy radio recetver & RBA, RBB, RBC, SRR-11, SRR-12, SRR-13, or equivalent. & To receive frequencyshifted rf algnals and deliver frequency-shifted af algnals to input of ComparatorConverter Group AN/URA-17. & Frequency-shifted af output of 600 ohms impedance, and up to 60 milliwatts power. \\
\hline - & Technical manual for each recelver used. & -- & For operating instructions. & --- \\
\hline 4 & Mounting bolts & -- & For table-mounting the AN/URA-17. & 1/4-28 thread \(x\) mounting burface thickness \(+3 / 8\) inch long. \\
\hline \multirow[t]{5}{*}{-} & \multirow[t]{5}{*}{Interconnecting cables} & MCOS-2 & Connect source power to POWER connector (J3). & --- \\
\hline & & TTHFWA-1-1/2 & Connect teletype printer to TTY OUTPUT connector (J6). & \\
\hline & & TTHFWA-1-1/2 & Connect audio input to AUDIO INPUT connector (J2). & \\
\hline & & RG-58A/U & Connect remote indicator (if used) to REMOTE TUNDNG IND connector (J7). & \\
\hline & & RG-58A/U & Connect DIV. A connector (J4) of each converter to the DIV. B connector (J5) of the other converter. & \\
\hline 1 & Teletype printer, or other automatic recorder & - & To record messages represented by the keyed output of the AN/URA-17. & Keying loop current of 60 ma , dc. \\
\hline
\end{tabular}

TABLE 1-3. COMPARATOR-CONVERTER GROUP AN/URA-17, TEST EQUIPMENT REQUIRED BUT NOT SUPPLIED
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { QUANT. } \\
& \text { PER } \\
& \text { EQUIP. }
\end{aligned}
\]} & \multicolumn{2}{|c|}{NOMENCLATURE} & \multirow[b]{2}{*}{REQUIRED
USE} & \multirow[b]{2}{*}{\begin{tabular}{l}
REQUIRED \\
CHARACTERISTICS
\end{tabular}} \\
\hline & NAME & DESIGNATION & & \\
\hline 1 & Oscilloscope & DuMont 304-A & Trouble-shooting the AN/URA-17. & Display 800 to 3600 cps audio frequency signals at amplitude of 0.1 to 50.0 volts. \\
\hline 2 & Vtvm, ac & ME-30/U & Trouble-shooting and alignment of converters; checking fiters and discriminators. & Measure audio frequency voltages, 0.1 to 20 volts at 800 to \(3600 \mathrm{cps}, \pm 5 \%\). \\
\hline 1 & Audio oscillator & TS-382A/U & Alignment of converters; checking filters and discriminators. & Audio frequency output: 800 to 3600 cps at amplitudes 0 to 10 volts. \\
\hline 1 & Frequency meter & AN/TSM-3 & Checking filters and discriminators. & Measurement of audio frequencies, \(\pm 1 \%\). \\
\hline 2 & Multimeter & AN/PSM-4 & -Truuble-shooting, measurement of power supply outputs, alignment, checking filters and discriminators. & DC voltages 0 to 560 volts \(\pm 3 \%\), ac voltages 0 to 125 volts \(\pm 5 \%\), at 50 to 400 cps . \\
\hline 1 & Test set, transistor & TS-1100/U & Test transistors and diodes. & Test semiconductors (in circuit or out). \\
\hline
\end{tabular}

TABLE 1-4. COMPARATOR-CONVERTER GROUP AN/URA-17, SHIPPRNG DATA
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c} 
BOX \\
NO.
\end{tabular}} & \multicolumn{2}{|c|}{ NOMENCLATURE } & \multicolumn{2}{|c|}{ *OVERALL DIMENSIONS } & \multirow{2}{*}{ *VOLUME } & *WEIGHT \\
\cline { 2 - 8 } & NAME & DESIGNATION & HEIGHT & WLDTH & DEPTH & & \\
\hline 1 & \begin{tabular}{l} 
Comparator-Converter \\
Group
\end{tabular} & AN/URA-17 & \(16-3 / 4\) & \(26-3 / 4\) & \(24-3 / 4\) & 6.42 & 125 \\
\hline
\end{tabular}
* Unless otherwise stated, dimensions are in inches, volume in cubic feet, and weight in pounds; equipment crated and ready for shipment.

TABLE 1-5. FREQUENCY SHIFT CONVERTER CV-483/URA-17,* TRANSISTOR COMPLEMENT
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SYMBOL,} & \multicolumn{9}{|c|}{NUMBER OF TRANSISTORS OF TYPES INDICATED} \\
\hline & ¢
m
N
N & \% & ¢
N
N & N & 芯 &  & E
\(\substack{\text { ¢ } \\ \text { N }}\) & N & \(\stackrel{\sim}{¢}\) \\
\hline & & & & & & 1 & & & 1 \\
\hline Q2 & & & & & & 1 & & & 1 \\
\hline Q3 & & & & & & 1 & & & 1 \\
\hline Q4 & & & & & & & & 1 & 1 \\
\hline Q5 & & & & & & & & 1 & 1 \\
\hline Q6 & & 1 & & & & & & & 1 \\
\hline Q7 & & 1 & & & & & & & 1 \\
\hline Q8 & & 1 & & & & & & & 1 \\
\hline Q9 & & 1 & & & & & & & 1 \\
\hline Q10 & & & & & & & 1 & & 1 \\
\hline Q11 & & & 1 & & & & & & 1 \\
\hline 012 & & & & 1 & & & & & 1 \\
\hline Q13 & & 1 & & & & & & & 1 \\
\hline Q14 & 1 & & & & & & & & 1 \\
\hline Q15 & 1 & & & & & & & & 1 \\
\hline Q16 & & 1 & & & & & & & 1 \\
\hline Q17 & & & & & & & 1 & & 1 \\
\hline Q18 & & & & & & & 1 & & 1 \\
\hline Qly & & 1 & & & & & & & 1 \\
\hline Q20 & & & & & 1 & & & & 1 \\
\hline Q21 & & 1 & & & & & & & 1 \\
\hline Q22 & & 1 & & & & & & & 1 \\
\hline Q23 & & & & & 1 & & & & 1 \\
\hline Q24 & & & & 1 & & & & & 1 \\
\hline Total Number of Each Type & 2 & 9 & 1 & 2 & 2 & 3 & 3 & 2 & 24 \\
\hline
\end{tabular}
* The AN/URA-17 complement is twice the above.

TABLE 1-6. FREQUENCY SHIFT CONVERTER CV-483/URA-17,* DIODE COMPLEMENT
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SYMBOL} & \multicolumn{7}{|c|}{NUMBER OF DIODES OF TYPES INDICATED} \\
\hline & N & \({ }_{\sim}^{\infty}\) & \(\stackrel{\sim}{2}\) &  &  &  &  \\
\hline CR1 & & 1 & & & & & 1 \\
\hline CR2 & & 1 & & & & & 1 \\
\hline CR3 & & 1 & & & & & 1 \\
\hline CR4 & & 1 & & & & & 1 \\
\hline CR5 & & 1 & & & & & 1 \\
\hline CR6 & & 1 & & & & & 1 \\
\hline CR7 & & & & 1 & & & 1 \\
\hline CR 8 & & & & 1 & & & 1 \\
\hline CR9 & & 1 & & & & & 1 \\
\hline CR10 & & 1 & & & & & 1 \\
\hline CR11 & 1 & & & & & & 1 \\
\hline CR 12 & 1 & & & & & & 1 \\
\hline CR13 & 1 & & & & & & 1 \\
\hline CR 14 & 1 & & & & & & 1 \\
\hline CR 15 & 1 & & & & & & 1 \\
\hline CR16 & 1 & & & & & & 1 \\
\hline CR17 & 1 & & & & & & 1 \\
\hline CR18 & & 1 & & & & & 1 \\
\hline CR19 & 1 & & & & & & 1 \\
\hline CR 20 & & 1 & & & & & 1 \\
\hline CR21 & & & & & & 1 & 1 \\
\hline CR 22 & & & & & & 1 & 1 \\
\hline CR 23 & & 1 & & & & & 1 \\
\hline CR 24 & & 1 & & & & & 1 \\
\hline CR 25 & & 1 & & & & & 1 \\
\hline CR 26 & & 1 & & & & & 1 \\
\hline CR 27 & & & & & 1 & & 1 \\
\hline CR 28 & & 1 & & & & & 1 \\
\hline CR 23 & & 1 & & & & & 1 \\
\hline CR30 & & 1 & & & & & 1 \\
\hline CR31 & & 1 & & & & & 1 \\
\hline CR32 & & & 1 & & & & 1 \\
\hline CR33 & & & 1 & & & & 1 \\
\hline CR34 & & & & & 1 & & 1 \\
\hline Total Number of Each Type & 8 & 18 & 2 & 2 & 2 & 2 & 34 \\
\hline
\end{tabular}
- The AN/URA-17 complement is twice the above.

\title{
SECTION \\ 2 \\ INSTALLATION
}

\section*{2-1. UNPACKING AND HANDLING.}

Comparator-Converter Group AN/URA-17 (hereinafter referred to as the AN/URA-17) and accessorles are packed in one wooden shipping box. The equipment is packaged in a corrugated fiberboard carton inside a moisture-vaporproof wrapper with a desiccant included. Do not unpack untll ready for use.

Place shipping box in right-side-up position, break the steel straps, and remove the top cover. Open the outer fiberboard carton and the barrier bag. Open the inner carton and remove the equipment.

\section*{CAUTION}

Do not cut the inner carton open unless the cutting blade has a guard which will prevent cutting deeper than the thichess of the 1 ifberboard.

Remove the accessories from the packing cells and check the equipment for shipping damage, and against the list of equipment supplied, table 1-1.

\section*{2-2. POWER REQUIREMENTS AND DISTRIBUTION.}

The AN/URA-27 consists of two Frequency Shift Converters CV-483/URA-17. Each Frequency Shift Converter CV-483/URA-17 (hereinafter referred to as the converter) requires 35 watts of input power and is internally wired for operation on 115 volts, 50 to 400 cps , single phase ac. If 105 or 125 volt line voltage is to be used, the connections to power transformers T3 and T4 (figure 5-1) will require changing (refer to paragraph 2-4c(4)). Figure 5-9 shows the primary power distribution for the converter.

\section*{2-3. \(\operatorname{INSTALLATION~LAYOUT.~}\)}

Install the AN/URA-17 so the tuning indicators may be observed while tuning the associated receivers. If this is not feasible, any oscilloscope
with a de vertical amplifier may be used as a remote tuning indicator, located near the receivers. It is desirable to install the two converters together if used for diversity operation. Converters used for single-receiver operation should be located near their respective receivers. The installation layout should also allow sufficient space in front of the converters to permit withdrawal of the chassis for servicing (refer to paragraph 2-4a).

\section*{2-4. INSTALLATION REQUIREMENTS.}
a. OUTLINE DRAWINGS. - Figure 2-1 shows all mounting dimensions and clearances required for table-mounting the AN/URA-17. Figure 2-2 shows all mounting dimensions and clearances required for table-mounting the CV-483/URA-17. Figure 2-3 shows all mounting dimensions and clearances required for rack-mounting the CV-483/URA-17.
b. EQUIPMENT MOUNTING. - The AN/URA-17 may be table-mounted, or the clamps removed and the individual converters separately table or rackmounted. Refer to applicable mounting procedure in the following paragraphs.
(1) TABLE-MOUNTING THE AN/URA-17. -Table-mounting of the AN/URA-17 is performed as follows:

Step 1. Layout and drill four \(9 / 32\) inch holes (figure 2-1) through mounting surface.
Step 2. Place AN/URA-17 in position on mourting surface.
Step 3. Insert four bolts ( \(1 / 4-28\) thread \(x\) mounting surface thickness \(+3 / 8\) inch long) up through mounting surface into captive nuts in AN/URA-17. Tighten securely.
(2) TABLE-MOUNTING T:IF: CV-483/

URA-17. - Table-mounting \({ }^{\prime \prime}\) ive CV-483/URA-17 is performed as follows:

Step 1. Layout and drill four 9/32 inch holes (figure 2-2) through mounting surface.
Step 2. Install mounting feet on bottom of cablnet, using 8-32 binder-head screws and washers provided.
Step 3. Remove chassis from cabinet (Section 6, paragraph 6-3c(1)).


Figure 2-1, Comparator-Converter Group AN/URA-17, Table-Mounting Installation Drawing

Step 4. Insert four socket-head cap screws (1/4-20 thread) through holes in bottom of cabinet (of sufficient length to pass through mounting surface and allow use of flat washer and lockwasher under each nut).
Step 5. Install flat washer, lockwasher, and nut on each bolt and tighten securely.
Step 6. Replace chassis in cabinet.
(3) RACK-MOUNTING THE AN/URA-17. -Rack-mounting of the AN/URA-17 is performed as follows:

Step 1. Remove clamps holding converters together, and lift off upper converter.
Step 2. Remove 10-32 binder-head screws (six on side of each cabinet, figure 2-3).
Step 3. Fasten rack-mounting brackets on each cabinet, using screws just removed (figure 2-3). Tighten screws securely.

Step 4. Remove chassis from each cabinet (Section 6, paragraph 6-3c(1)).
Step 5. Install cabinets in rack. Boit securely. Step 6. Replace chassis in cabinets.
(4) RACK-MOUNTING THE CV-483/

URA-17. - Rack-mounting of the CV-483/URA-17 is performed as follows:

Step 1. Remove 10-32 binder-head screws (six on each side of cabinet, figure 2-3).
Step 2. Fasten rack-mounting brackets on cabinet, using screws just removed (figure 2-3). Tighten screws securely.
Step 3. Remove chassis from cablnet (Section 6, paragraph 6-3c(1)).
Step 4. Install cabinet in rack. Bolt securely. Step 5. Replace chassis in cabinet.
c. INTERCONNECTION. - All interconnecting cables attach to receptacles on the rear of the cyon-
verter cabinets. These cables must be fabricated during installation, in lengths determined by equipment layout. Instructions for attaching the supplied connectors to the required cables are given in paragraph 2-4d.

\section*{NOTE}

Interconnecting cable types may vary between installations. Refer to applicable ship or station plans to determine the correct cabling for the specific installation.
(1) INTERCONNECTING CABLES FOR SIN-GLE-RECEIVER OPERATION. - Table 2-1 lists the required cable and connector information for single-receiver operation of one converter. Figure \(2-4\) illustrates the interconnection to associated equipment.
(2) INTERCONNEC'IING CABLES FOR DI-

VERSITY OPERATION. - Table 2-\% lists the required cable and connector information for diversity operation of the AN/URA-17. Figure 2-5 illustrates the interconnection to associated equipment.
(3) AUDIO INPUT LINES. - The AN/URA-17 requires 600 ohm, 60 milliwatt outputs from the associated receivers. If the receiver outputs are balanced, STANDOFF E1 in each converter should be grounded. To accomplish this, loosen the four captive screws at corners of receptacle panel, remove panel from the rear of each converter cabinet (figure 2-6), and solder a lead from STANDOFF El to a nearby ground terminal. If the receiver outputs are unbalanced (one side grounded), leave STANDOFF El ungrounded.
(4) POWER TRANSFORMER CONNECTIONS. -

The AN/URA-17 is shipped from the factory with power transformers T3 and T4 in each converter connected for a nominal line voltage of 115 volts. If nominal line voltage is 105 volts, the leads con-


NOTE: ALL DIMENSIONS ARE IN INCHES

Figure 2-2. Frequency Shift Converter CV-483/URA-17, Table-Mounting Installation Drawing
nected to terminal 3 of T3 and T4 (see Section 5, figure 5-1) must be moved to terminal 2 of the respective transformer. If nominal line voltage is 125 volts, the leads connected to terminal 3 of T3 and T4 must be moved to terminal 4 of the respective transformer.
d. CABLE ASSEMBLY. - Attach the connectors to interconnecting cables as follows:
(1) ATTACHING UG-88D/U CONNECTORS TO RG-58A/U COAXIAL CABLE. - Attach the UG-88D/U connectors (supplied) to RG-58A/U coaxial cable as described in figure 2-7.
(2) ATTACHING MS CONNECTOR TO MCOS-2 CABLE. - Attach each MS connector (supplied) to MCOS-2 cable as described below (see flgure 2-8).

Step 1. Cut cable end even.
Step 2. Slide cable clamp (1), rubber washer (2), soldering ring (3), and extension (4) over end of cable, in order given.

Step 3. Remuve vinyl jacket from 11/16 inch of cable.
Step 4. Unbrald and pigtail braid.
Step 5. Remove insulation from \(3 / 16\) inch of leads.
Step 6. Tin bare lead ends.
Step 7. Slide a \(1 / 2\) inch length of vinyl tubing over end of each lead.
Step 8. Solder each lead to plug pin, according to table 2-1 or 2-2, as applicable.
Step 9. S!ide vinyl tubing on each lead so it covers soldered connection. Wrap a layer of adhesive plastic tape around leads.
Step 10. Slide extension (4) over pigtail and screw it on shell (5).


Figure 2-3. Freguency Shift Converter CV-483/URA-17, Rack-Mounting Installation Drawing


Figure 2-4. Frequency Shift Converter CV-483/URA-17, Interconnecting Data for Single-Receiver Operation

TABLE 2-1. CABLING REQUIRED FOR SINGLE-RECEIVER OPERATION*
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\[
\begin{gathered}
\text { CABLE } \\
\text { TYPE }
\end{gathered}
\]} & \multicolumn{2}{|r|}{PLUG} & \multicolumn{2}{|l|}{CONNECTIONS} & \multicolumn{2}{|c|}{TERMINATIONS} \\
\hline & SYMBOL & DESIGNATION & \[
\begin{aligned}
& \text { LEAD } \\
& \text { COLOR }
\end{aligned}
\] & PIN NO. & FROM & TO \\
\hline \[
\begin{aligned}
& \text { TTHFWA- } \\
& 1-1 / 2 \\
& \text { (W6) }
\end{aligned}
\] & P202 & MS3106A14S-7P & BLACK WHITE RED &  & AUDIO INPUT connector J2 & FSK receiver \\
\hline \[
\begin{aligned}
& \text { MCOS-2 } \\
& \text { (W4) }
\end{aligned}
\] & P203 & MS3106A14S-7S & BLACK WHITE & \begin{tabular}{l}
A \\
B (GRD)
\end{tabular} & POWER INPUT connector J3 & Line voltage source \\
\hline \[
\begin{aligned}
& \text { TTHFWA- } \\
& 1-1 / 2 \\
& (W 5)
\end{aligned}
\] & P206 & MS3106A14S-9S & BLACK WHITE RED & B (GRD) A (HOT) SPARE & TTY OUTPUT connector J6 & Teletype printer keying loop \\
\hline \[
\begin{gathered}
\text { RG-58A/U } \\
(W 1)^{* *}
\end{gathered}
\] & P207 & UG-88D/U & -- & --- & \begin{tabular}{l}
REMOTE TUNING \\
IND. connector J7
\end{tabular} & Remote tuning indicator \\
\hline \begin{tabular}{l}
Copper \\
braid
\end{tabular} & - & --- & --- & --- & GRD terminal & Good earth ground \\
\hline
\end{tabular}
* Use in conjunction with figure 2-4.
** Required only when remote tuning indicator is used.


Figure 2-5. Comparator-Converter Group AN/URA-17. Interconnecting Data for Diversity Operation

Step 11. Solder pigtail to soldering ring (3).
Step 12. Screw cable clamp (1) on extension and tighten cable clamp screws.
(3) ATTACHING MS CONNECTORS TO TTHFWA-1-1/2 CABLE. - Attach each MS connector (supplied) to TTHFWA-1-1/2 cable as described below (see figure 2-9):

Step 1. Cut cable end even.
Step 2. Wrap layer of adhesive plastic tape
around armor (exposing 11/16 inch end of cable).
Step 3. Slide cable clamp (1), rubber washer (2), soldering ring (3), and extension (4) over end of cable in order given.

Step 4. Remove armor, vinyl jacket, and wrappings from 11/16 inch of cable.
Step 5. Remove insulation from 3/16 inch of leads to be used. Do not remove insulation from "spare" lead.

TABLE 2-2. CABLING OF EACH CONVFRTER FOR DNEFHSITY OPERATION •
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{CABLE TYPE} & \multicolumn{2}{|r|}{PLUG} & \multicolumn{2}{|l|}{CONNF.CTIONS} & \multicolumn{2}{|c|}{terminations} \\
\hline & SYMBOL & DESIGNATION & \[
\begin{aligned}
& \text { LEAD } \\
& \text { COLOR }
\end{aligned}
\] & PIN NO. & FHOM & TO \\
\hline \[
\begin{aligned}
& \text { TTHFWA- } \\
& 1-1 / 2 \\
& \text { (W6) }
\end{aligned}
\] & P202 & MS3106A14S-7P & BLACK WHITE RED &  & AUDIO IN PUT connector J2 & FSK receiver \\
\hline \[
\begin{aligned}
& \text { MCOS-2 } \\
& \text { (W4) }
\end{aligned}
\] & P203 & MS3106A14S-7S & BLACK WHITE & \[
\begin{gathered}
\mathrm{A} \\
\mathrm{~B}(\mathrm{GRD})
\end{gathered}
\] & POWER input connector J3 & Line voltage source \\
\hline \[
\begin{aligned}
& \text { TTHFWA- } \\
& 1-1 / 2 \\
& (W 5)^{* *}
\end{aligned}
\] & P206 & M53106A14S-9S & BLACK WHITE RED & \begin{tabular}{l}
B (GRD) \\
A (HOT) \\
SPARE
\end{tabular} & TTY OUT PUT connector J6 & Teletype printer keying loop \\
\hline \[
\begin{aligned}
& \text { RG-58A/U } \\
& \left(\mathrm{W}_{3}\right)^{* *}
\end{aligned}
\] & P204 & UG-83D/U & --- & --- & DIV. A connector J4 & DIV. B, on other converter \\
\hline \[
\begin{aligned}
& \text { RG-58A/U } \\
& \text { (W2)** }
\end{aligned}
\] & P205 & UG-88D/U & --- & -- & DIV. B connector J5 & DN. A, on other converter \\
\hline \[
\begin{aligned}
& \text { RG }-58 \mathrm{~A} / \mathrm{U} \\
& (\mathrm{~W} 1)^{* * *}
\end{aligned}
\] & P207 & UG-88D/U & --- & - & \begin{tabular}{l}
REMOTE TUNING \\
IND. J7 \\
connector
\end{tabular} & Remote Euning indicator \\
\hline Copper brald & --- & --- & --- & --- & GRD terminal & Good earth ground \\
\hline
\end{tabular}
* Use in conjunction with figure 2-5.
** These cables required only for one converter.
*** Required only when remote tuning indicator is used.

Step 6. Tin bare lead ends.
Step 7. Slide a \(1 / 2\) inch length of vinyl tubing over end of each lead to be used. Slide a 11/16 inch length of vinyl tubing over end of spare lead.
Step 8. Solder each lead to plug pin, according to table 2-1 or 2-2, as applicable.
Step 9. Slide vinyl tubing on each lead so it covers soldered connection. Wrap a layer of adhesive plastic tape around leads.
Step 10. Slide extension (4) over pigtail and screw it on shell (5).
Step 11. Screw cable clamp (1) on extensior and
tighten cable clamp screws.

\section*{2-5. INSPECTION AND ADJUSTMENTS.}
a. MECHANICAL AND ELECTRICAL CHECKS.

Before releasing the AN/URA-17 to operating personnel, perform the fo!lowing mechanical and electrical checks:
(1) MECHANICAL JHECKS. - Check each control for smoothness of operation. Check chassis drawer slides and lubricate lightly with lubriplate, if required.

TABLE 2-3. FREQUENCY SHIFT CONVERTER CV-483/URA-17, CRT ADJUSTMENT CONTROLS
\begin{tabular}{|l|l|}
\hline CONTROL & \multicolumn{1}{c|}{ FUNCTION } \\
\hline FOCUS & \begin{tabular}{l} 
Used to eharpen the lines in the cathode-ray \\
tube diaplay. \\
Used to adjust the fntensity of the cathode-ray \\
tube display. \\
Used to center the cathode-ray tube dieplay \\
(with no eignal fnput).
\end{tabular} \\
\hline
\end{tabular}


Pigure 2-6. Frequency Shift Converter CV-483/URA-17, Cable Receptacle Panel, Interior View

\section*{(2) ELECTRICAL CHECKS.}

\section*{(a) CRT ADJUSTMENT CONTROLS.}
(Table 2-3.) - Turn WOWER switch of one converter to On and set the FUNCTION switch to TUNE. With no signal input to converter, horizontal trace on tuning indicator should coincide with center line of crt bezel and be bright and sharp. If not, proceed as follows:

Step 1. Loosen captive screw at each corner of front panel.
Step 2. Pull chassis forward until controls (figure 2-10) are accessible.
Step 3. Operate interlock switch (figure 2-10) by pressing in on button at left side of switch.
Step 4. Adjust FOCUS, INTENSITY, and VERT CTR controls as required, push chassis back into cabinet, and tighten captive screws.
Step 5. Repeat for second converter.
(b) PRE-OPERATIONAL CHECK. -

Interconnect the converter and teletype printer as illustrated in figure 2-11. Turn teletype printer dc loop current supply on. Check teletype printer dc loop voltage and polarity. It should be approximately 12 volts, positive with respect to chassis, at terminal A of TTY OUTPUT receptacle (J6) on rear of converter to which teletype printer is connected. Adjust teletype printer dc loop current for 60 milliampere indication on TTY panel ammeter by means of applicable rheostat.
(e) OPERATIONAL CHECK. - Upon completion of pre-operational checks, check equipment for proper operation as described in Section 3, paragraph 3-2g(1) for single-receiver operation or in Section 3, paragraph 3-2g(2) for diversity operation. Check with both narrow-shift and wideshift input signals, if practicable. If operation is
not correct, recheck all steps of installation. If difficulty cannot be found and corrected, notify communications officer at station or ship.

\section*{NOTE:}

Unmodified R390-A radio receivers have insufficient audio output to operate this equipment efficiently. The required modification is Field Change 2-8-390A/ URR (Electronics Information Bulletin 542, dated 22 August 1960). After modification, set Line Meter switch to +10 position and adjust Line Gain control for +10 indication on Line Level meter.

\section*{2-6. PREPARATION FOR RESIIPMENT.}
a. INTERCONNECTING CABLES. - Disconnect all cables from the receptacles on rear of converters. Remove all connectors from cable ends at converter, for use at next installation.
b. DISMOUNTING EQUIPMENT. - If tablemounted, remove the converter chassis from cabinet (as described in Section 6, paragraph 6-3c (1)), and take out bolts holding cabinet to mounting surface. If rack-mounted, remove converter from rack and take off mounting brackets. Replace bolts removed from converter cabinet.
c. PACKING. - Before packing for shipment, check all items against table 1-1. Instruct packaging and packing facility as to type of equipment and whether the preparation shall be for domestic shipment-immediate use, domestic shipment and storage, or for overseas shipment; and to mark the box containing the technical manuals, "TECHNICAL MANUALS INSIDE."

1. CUT END Of CABLE EVEN SLIDE NUT AND WASHER (NOTCHED SIDE OUTI ON CABLE.
2. REMOVE S/i6 INCH OF VINYL JACKET. DO NOT NICK BRAID.

3. SIIDE BRAID CLAMP OVER BRAID. INSIDE SHOULDER OF CLAMP MUST SEAT AGAINST END OF CÁBLE JACKET.

4. COMB OUT BRAID, BEND BACK OVER CLAMP, AND TRIM TO LENGTH.

5. REMOVE T/64 INCH OF DJELECTRIC. DO NOT NICK CONDUCTOR. TIN CONDUCTOR LIGHTLY.
6. SOLDER MALE CONTACT TO CONDUCTOR. OUTSIDE SURFACE MUST be Free of solder.
7. PUSH INTO PLUG BODY AS FAR AS IT WILL GO. SCREW NUT INTO PLUG BODY WITH WRENCH UNTIL MODERATELY TIGHT.

NOTE: ALL DIMENSIONS ARE IN INCHES

Figure 2-7. Attaching UG-88D/U Plug to RG-58A/U Coaxial Cable


Figure 2-8. Attaching MS Plug to MCOS-2 Cable


Figure 2-9. Attaching MS Plug to TTHFWA-1-1/2 Cable


Figure 2-10. Location of Cathode-Ray Tube Controls


Figure 2-11. Teletype Printer DC Keying Relay Circuit, Simplified Schematic Diagram

\title{
SECTION 3 \\ OPERATOR'S SECTION
}

\section*{3-1. FUNCTIONAL OPERATION.}
a. GENERAL. - Comparator-Converter Group AN/URA-17, hereinafter referred to as the AN/URA-17, is used to convert the frequency-shiftkeyed (fsk) audio output of standard radio receivers into dc pulses for the operation of teletype printers. The AN/URA-17 may be used in one or two singlechannel receiving systems or in a single "diversity" system.
b. FREQUENCY-SHIFT METHOD OF COMMUNICATION. - In the frequency-shift method of communication, code messages are transmitte. 1 as shifts in the rf carrier frequency. These frequency shifts represent the mark and space portions of code characters for operation of a teletype printer. Radio receivers are used to change these rf carrier frequency shifts into audio tones contalning the same frequency shift information. Coded messages transmitted at speeds to 400 words per minute may be received and recorded in this system.

The AN/URA-17 consists of two Frequency Shlft Converters CV-483/URA-17. The CV-483/ URA-17, hereinafter referred to as the converter, changes audio frequency tones into dc pulses for operation of a teletype printer.
c. DIVERSITY OPERATION. - The AN/URA-17 may be used with two radio receivers operating in a diversity system. There are two methods of diversity oper ation, space-diversity and frequencydiversity. Diversity operation provides an improvement over single-receiver operation by reducing the effects of signal fading.

In space-diversity operation, two receivers are tumed to the same frequency but their antennas are spaced several wavelengths apart. An rf carrier usually does not fade simultaneously at spots that are several wavelengths apart.

In frequency-diversity operation, two receivers are tuned to different if carrier frequencies, each carrying the same frequency-shift information. Carriers of different frequencies do not generally fade simultaneously at a given spot.

The audio output from the receivers is applied to the converters. The converters change the fre-
quency-shifted audio signals into dc pulses representing the mark-space information. These dc pulses are applied to a comparator circuit in each converter. The comparator circuits continuously select the better of the two signals for control of the teletype printer. A teletype printer may be connected to the output of either converter.
d. SDNGLE-RECEIVER OPERATION. - When coñditions do not require diversity operation (strong signals with no evidence of fading), either converter may be used separately with a receiver for reception of fsk sígnals. In this mode of operation, the two converters may be used simultaneously in two independent single-receiver systems. A teletype printer is connected to the output of each converter.

\section*{3-2. OPERATING PROCEDURES.}
a. GENERAL. - Since the AN/URA-17 is part of a system for the reception of coded teletype messages, the operator must be familiar with the complete system before attempting any of the following procedure.
b. DESCRIPTION OF CONTROLS. - All controls normally used during operation are located on the front panels of the two identical converters (figure \(3-1\) ). Table 3-1 lists all operator's controls by name and function. Other controls are to be ddjusted only by a technician.

\section*{c. SEQUENCE OF OPERATION.}
(1) BEFORE USE. - Ascertaln if equipment is connected for diversity or single-receiver operation. Allow the associated receivers and teletype printer(8) to warm up (see applicable technical manuals). Turn the converter POWER switches to the On (up) position and allow a five minute warmup period.
(2) DURING USE. - Adjust converters and associated equipment as directed in paragraph \(3-2 \mathrm{~g}(1)\) for single-receiver operation or paragraph \(3-2 \mathbf{g}(2)\) for diversity operation.
(3) SECURE. - To secure the AN/URA-17, tura POWER switch on each converter to Off (down) prsition.

TABLE 3-1. FREQUENCY SHIFT CONVERTER CV-483/URA-17, OPERATING CONTROLS
\begin{tabular}{|c|c|c|}
\hline CONTROL & POSITION & FUNCTION \\
\hline LEVEL & Variable, 0 to 10 & Adjuste the sigaal level to the discriminator. \\
\hline SHIFT & \begin{tabular}{l}
NARROW \\
WIDE
\end{tabular} & \begin{tabular}{l}
Selecte the narrow inpurt filter and diacriminator ( 10 to 200 cps sbift width). \\
Selects the wide input filter and discriminator ( 200 to 1000 cps shift width).
\end{tabular} \\
\hline FUNCTION & \begin{tabular}{l}
SINGLE \\
TUNE \\
DIVERSITY
\end{tabular} & \begin{tabular}{l}
Used for single-recelver operation. \\
Used when tuning the recelver (removes the input elgal from teletgpe printer). \\
Used for diversity operation.
\end{tabular} \\
\hline POLARITY & \begin{tabular}{l}
NORMAL \\
REVERSE
\end{tabular} & \begin{tabular}{l}
Used when keying pulses are of normal polarity. \\
Used when keying pulses are of reversed polarity.
\end{tabular} \\
\hline SPEED & FAST SLOW & Used for high speed heying signals. Used for low apsed leojing algale. \\
\hline POWER & On - Off & Turne line voltage on and off. \\
\hline
\end{tabular}
d. INDICATOR PRESENTATIONS. - Figure 3-2 illustrates the tuning indicator dieplays obtained When the associated receiver is properly traed (A) and when the assoclated recelver needs retroning (B or C).
e. TUNING ADJUSTMENTS.
(1) SINGLE-RECEIVER OPERATION. - The need for retuning the associated recelver to companaate for frequency drift can be determined by observing the converter tuning indicator pattern


Figure 3-1. Frequency Shift Converter CV-483/URA-17, Front Panel Controle
(figure 3-2). If the pattern departs from that in(A) of figure 3-2, retune the receiver.
(2) DIVERSITY OPERATION. - Retuning the associated receivers to compensate for frequency drift is the same as for single-receiver operation. However, to prevent inter ruption of communication while one of the receivers is being tuned, set the FUNCTION switch of the associated converter to TUNE. During retuning, the other receiver-converter combination will operate the teletype printer. After the receiver has been tuned, set the converter FUNCTION switch to DIVERSITY.

Step 6. Adjust associated receiver bfo to 1 kc for narrow-shift signals or to 2.5 kc for wide-shift signals. If receiver has agc switch, turn on.
Step 7. Tune receiver to desired rf signal. Set receiver bandwidth to approximately 800 cps for narrow-shift signals or to approximately 3 kc for wide-shift signals. Tune receiver until strongest beat-note is heard in headphones plugged in receiver headphone jack. Adjust receiver tuning for symmetrical, vertically centered pattern on tuning indicator (as in


Figure 3-2. Tuning Indicator Patterns

\section*{f. ILLUSTRATIONS.}
(1) CONTROLS. - The controls used by the operator are illustrated in figure 3-1 and listed in table 3-1.
(2) INDICATOR PRESENTATION. - Refer to figure 3-2 for tuning indicator presentations during receiver tuning.
g. MODES OF OPERATION. - The operator has a choice of two modes of operation: 1) singlereceiver operation or 2 ) diversity operation.
(1) SINGLE-RECEIVER OPERATION. Either converter may be adjusted for singlereceiver operation, as follows:

Step 1. Turn POWER switch to ON.
Step 2. Set FUNCTION switch to TUNE.
Step 3. Set POLARITY switch to NORMAL.
Step 4. Set LEVEL control to 3.
Step 5. Set SHIFT switch to WIDE if wide-shift signals ( 200 to 1060 cps ) are being received or to NARROW if narrow-shift signals ( 10 to 200 cps ) are being received.
(A) figure 3-2). There are sometimes two receiver tuming positions that give a proper tuning indication; always select the stronger. Adjust audio output of receiver to 60 milliwatts.
Step 8. Set converter SPEED switch to SLOW if single-channel teletype signals are being received or to FAST if four-channel, timedivision multiplex is being received.
Step 9. Adjust LEVEL control until pattern fills space between upper and lower horizontal lines on crt bezel
Step 10. Set FUNCTION switch to SINGLE.
Step 11. Teletype printer should be printing properly. If not, set POLARITY 日witch to REVERSE.
(2) DIVERSITY OPERATION. - Each converter of the AN/URA-17 is adjusted for diversity operation as follows:

Step 1. Turn POWER switch to On.
Step 2. Set FUNCTION switch to TUNE.
Step 3. Set LEVEL control to approximately 3.
Step 4. Set POLARITY switch to NORMAL.
Step 5. Set SHIFT switch to WIDE if wide-shift
signals ( 200 to 1000 cps ) are betng received or to NARROW If narrow-shift signals ( 10 to 200 cps ) are being received.
Step 6. Adjust assoclated recelver bfo to 1 kc for narrow-shift signals or to 2.5 kc for wide-shift signals. If receiver has agc switch, turn on.
Step 7. Tune associated receiver to desired rf signal. Set receiver bandwidth to approximately 800 cps if narrow-shift signals are being received or to approximately 3 kc if wide-shift signals are being received. Tune receiver untll strongest beat-note is heard in headphones plugged in receiver headphone jack. Adjust receiver tuning for a symmetrical, vertically centered pattern on tuning indicator (as in (A) figure 3-2). There are sometimes two recelver tuning positions that give a proper tuning indication; always select the stronger. Adjust audio output of receiver to 60 milliwatts.
Step 8. Set converter SPEED switch to SLOW If single-channel teletype signals are being received or to FAST if four-channel, time-division multiplex is being received.
Step 9. Adjust LEVEL control until pattern fills space between upper and lower horizontal lines on crt bezel.
Step 10. Set FUNCTION switch to DIVERSITY.
Step 11. The teletype printer should be printing properly. If not, set POLARITY switch to REVERSE.
Step 12. Set FUNCTION switch to TUNE.
Step 13. Repeat steps 1 through 11 for the second converter.
Step 14. Set FUNCTION switch of first converter to DIVERSITY.

\section*{3-3. SUMMARY OF OPERATING PROCEDURES.}

\section*{a. SINGLE-RECEIVER OPERATION.}
(1) Turn receiver and teletype printer power switches to On.
(2) Set converter controls as follows:
(a) POWER switch to On.
(b) FUNCTION switch to TUNE.
(c) POLARITY switch to NORMAL.
(d) LEVEL control to 3 .
(e) SHIFT switch to WIDE (for wide-shift signals) or to NARROW (for narrow-shift signals).
(3) Set receiver controls as follows:
(a) Set receiver bfo to 1 kc for narrowshift signals or to 2.5 kc for wide-shift signals.
(b) Tune receiver to desired rf signal.
(c) Set receiver bandwidth to approximately 3 ke for wide-shift signals or to approximately 800 cps for narrow-shift signals.
(d) Tune receiver for strongest beat-note.
(e) Tine receiver for symmetrical, vertically centered pattern on converter tuning indicator. (If two receiver tuning positions occur, use stronger.)
(f) Adjust receiver audio output to 60 milliwatts.
(4) Set converter SPEED switch to SLOW for single-channel teletype signals or to FAST for four-channel, time-division multiplex.
(5) Adjust converter LEVEL control until pattern fills space between upper and lower horizontal lines on crt.
(6) Set converter FUNCTION switch to SINGLE.

\section*{NOTE}

If teletype printer is printing garbled copy, set converter POLARITY switch to REVERSE.
b. TO SECURE .
(1) Turn converter POWER switch to Off.

\section*{c. DIVERSITY OPERATION.}
(1) Turn receiver and teletype printer power switches to On.
(2) Set controls on one converter as follows:
(a) POWER switch to On.
(b) FUNCTION switch to TUNE.
(c) POLARITY switch to NORMAL.
(d) LEVEL control to 3 .
(e) SHIFT switch to WIDE for wide-shift signals or to NARROW for narrow-shift signals.
(3) Adjust associated receiver controls as follows:
(a) Set receiver bfo to 1 kc for narrowshift signals or to 2.5 kc for wide-shift signals. If receiver has age switch, turn on
(b) Tune receiver to desired ri signal.
(c) Set receiver bandwidth to approximately 3 kc for wide-shift signals or to approximately 800 cps for narrow-shift signals.
(d) Tune receiver for strongest beat-note.
(e) Tune receiver for symmetrical, vertically centered pattern on converter tuning indicator. (If two receiver tuning positions occur, use stronger.)
(f) Adjust receiver audio output to 60 milliwatts.
(4) Set converter SPEED switch to SLOW for single-channel teletype signals or to FAST for four-channel, time-division multiplex.
(5) Adjust converter LEVEL control until
pattern fills space between upper and lower horizontal lines on crt.
(6) Set converter FUNCTION switch to DIVERSITY.

\section*{NOTE}

If teletype printer is printing garbled copy, set converter POLARITY switch to REVERSE.
(7) Set FUNCTION switch to TUNE.
(8) Repeat steps 2 through 6 for second converter.
(9) If teletype printer is printing garbled copy, set converter POLARYTY switch to REVERSE.
(10) Set FUNCTION switch of first converter to DIVERSITY.

\section*{d. TO SECURE}
(1) Turn POWER switches of both converters to Off.

\section*{3-4. OPERATOR'S MAINTENANCE.}
a. GENERAL. - Maintenance responsibility of the operator is limited to monitoring equipment controls and the tuning indicator during operation,

TABLE 3-2. OPERATOR'S CHECK CHART
\begin{tabular}{|c|c|c|}
\hline CONTROL & SETTING & NORMAL \(\operatorname{INDICATION}\) \\
\hline Receiver power switch & On & Indicator light glows. \\
\hline Receiver frequency control & To desired rf signal & Audio in headphones or loudspeaker; pattern on converter tuning indicator similar to A in figure 3-2. \\
\hline Converter POWER switch & On & Indicator light glows. \\
\hline Converter LEVEL control & --- & Tuning indicator pailern fills space between horizontal lines on crt (see A in figure 3-2). \\
\hline Teletype printer power switch & On & Teletype printer printing readable copy. \\
\hline
\end{tabular}
plue indicator lamp and fuse replacement. If troubles develop in the sy日tem that cannot be remedied by the epecific instructions in the following paragraphe, qualified maintenance personnel must be notifled.

\section*{b. ROUTINE CHECK CHART. - Table 3-2}
outlines checke that should be made in the course of normal operation. If indications are other than normal, the operator should refer to the operator's troubleahooting chart, table 3-3. Troublee liated in table 3-3 should be consldered and checked in the order given.
c. DAILY CHECK FOR CORRECT DIVERSITY OPERATION. - When the AN/URA-17 is ubed for diveralty operation, a dally check should be made by the operator to aseure optimum reault.

The slgnals from both converters are compared in the converter to which the teletype printer is connected. Fallure of one eection of the comparator will eliminate the eelection function and the advantage of diveralty operation. To check for faulty eection in the comparator, proceed as followa:

Step 1. Check each converter for aingle-recelver operation per paragraph 3-2g(1).

TABLE 3-3. COMPARATOR-CONVERTER GROUP AN/URA-17, OPERATOR'S TROUBLE-SHOOTING CHART
\begin{tabular}{|c|c|c|}
\hline TROUBLE SYMPTOM & PROBABLE CAUSE & CORRECTION \\
\hline \multirow[t]{4}{*}{Indicator light off with POWER 日witch On.} & Defective indicator lamp bulb. & Replace bulb. Refer to paragraph 3-4d. \\
\hline & Fuee blown. & Replace fuee. Refer to CAUTION and fuse replacemont, paragraph 3-4e. \\
\hline & Interlock ewitch open. & Tighten the four captive screws on front panel. \\
\hline & AC power not on, or defective power input cable or connector. & Turn ac power on; report power fallure. Check power input cable and connectora. \\
\hline Still does not light. & --- & Notify tecbnician. \\
\hline No tuning indicator diaplay. & Blown fuee. & Replace fure. Refer to CAUTION and fuee replacement, paragraph 3-4ㅇ. \\
\hline Tuning indicator diaplay not centered vertically. & Recelver miatuned. & Retune recelver. Refer to paragraph 3-2e. \\
\hline Tuning indicator dieplay centered and of proper amplitude, but teletype printer is loched up. & Converter FUNCTION ewitch in TUNE position. & Set FUNCTION ewitch to SINGLE or DIVERSITY position, as applicable. \\
\hline \multirow[t]{2}{*}{Tuning indicator diaplay correct, but teletype printer runs open.} & Teletype printer power supply defective. & Notify techniclan. \\
\hline & Teletype printer defective. & Notify techniclan. \\
\hline
\end{tabular}

Step 2. Connect receiver (tuned for fsk reception) to AUDIO INPUT receptacle on one converter (see figure \(3-3\) ).
Step 3. Connect teletype printer to TTY OUTiPUT receptacle on other converter.
Step 4. Set FUNCTION switches on both converters to DIVIERSITY.
Step 5. Finergize equipment.
Step 6. If teletype printer prints readable copy, switch receiver and teletype printer connections to converters as shown by broken lines in figure 3-3. If teletype printer does not print, notify technician.

\section*{NOTE,}

If teletype printer prints readable copy during one of the preceding tests, the equipment may be operated with teletype print? - so connected until technician can make necessary repairs.

\section*{d. INDICATOR LAMP REPLACEMENT. - To} replace indicator lamp, unscrew lens assembly from the front panel. Release lamp by pressing in and
turning counterclockwise. Insert new lamp and lock it in place by pressing in and turning clockwise. Reinstall the lens assembly.
e. FUSF: RF: PLACEMENT. - Fuses F1 and \(\mathcal{F} 2\) are mounted on the front panel (see firure 3-1). Both fuses are \(1 / 2\) ampere. To remove, press in on the cap, turn cowiterclockwise, and pull out the cap with the fuse attached. Remove and discard blown fuse. Insert a new fuse in the cap, Insert cap in the holder, press in, and turn clockwise to lock. Replenish spare fuses from general stock.

\section*{CAUTION}

Never replace a fuse with one of higher rating unless continued operation of the equipment is more important than pos. sible damage to the equipment. If a fuse blows immediately after replacement, do not replace it a second time until the cause has been corrected.
f. EMERGENCY MAINTENANCE. - No maintenance other than that described in this section is to be performed by the operator.


Figure 3-3. Connections between Receiver, Teletype Printer, and Converter Group for Daily Check of Diversity Operation

\section*{SECTION 4}

\section*{PRINCIPLES OF OPERATION}

\section*{4-1. OVFRALL F゙UNCTIONAL DESCRIPTICAN.}
a. GENF:RAL. - The overall function of Compar-ator-Converter Group AN/URA-17 is to provide a link in the receiving end of a frequency-shift communication system. The frequency-shift method of communication is a system of automatic code transmission, ant reception, by means of a frequency modulated if carrier. In this system, the mark and space portions of the code characters are repr'sented by shifts above and below the rf carrier frequency.

The frequency-shift separation employed betwein mark and space sijinals may be as little as 10 cycles per second or as much as 1000 cycles per second. This scope of frequency-shifts is divided into two ranges called "narrow shift" and "wide shift." Narrow shift covers the range of 10 to 200 cycles per second, and wide shift covers the range of 200 to 1000 cycles per second.

The system of reception to be considered here involves the use of a radio receiver for changing the rf carrier into an audio tone by means of a beatfrequency oscillator. The carrier-shift then becomes an audio frequency-shift of the same number of cycles per second.

\section*{b. DIVERSITY OPERATION. - Comparator-} Converter Group AN/URA-17 consists of two Frequency Shift Converters CV-483/URA-17, designed for use with two standard radio receivers operating in a diversity system. In space-diversity operation, the two receivers are tuned to the same frequency out the receiving antennas are spaced more than one wavelength apart. In frequency-diversity speration, the two receivers are tuned to separate requency-shift carriers (of different frequencies) which are simultaneously carrying the same markspace characters. The advantage of space-diversity operation for reception of distant signals results from the fact that a single ri carrier does not renerally fade simultaneously at spots more than one wavelength apart. The advantage of frequencydiversity operation results from the fact that fading of carriers of different frequencies does not generally occur at the same time.

The output of each receiver is connected to one Frequency Shift Converter CV-483/URA-17 (here-
inafter referred to as the converter) which converts the frequency-shift characters into dc pulses.
These dc pulses are applied to a comparator circuit in each of the converters. The comparators selfet the better of the two input simisals for operation of the teletype printer. The teletype printer may be connected to the output of either converter.
c. SING \(£\) E-IRECEIVER OPERATION. - Where conditions do not require diversity operation, each converter may be used separately with a sincle receiver for reception of frequency-shift signals. In this case, the two converter units may be used in two independent communication circuits.
d. SIMPLIFIED BLOCK DIAGRAM. - The simplifjed block diagram, figure 4-1, indicates the basic functions of converting the rf frequency-shift signal into a signal for controlling the dc loop of a teletype printer. The frequency shifts of the audiofrequency output of the radio receiver are converted into de pulses by the action of an audio-frequency discriminator. The de pulses are fed into a loop keyer which.opens and closes the dc loop of the associated teletype printer in accordance with the mark and apace characters received.

The frequency versus mark-space relationship shown in figure \(\&-1\) is the most typical. The higher frequency represents the mark signal and the lower frequency represents the space signal. However, the opposite is also used, or the tuning and heterodyming of the signal in the receiver may reverse the relationship. When such reversed characters are applied to the teletype printer, garbled copy results. A reversing switch (not shown) is provided on each converter to reverse the relation ship when required.
e. FUNCTIONAL BLOCK DIAGRAM. - Figure \(4-\overline{2}\) is a block diagram representing the principal functions of the circuits of the complete equipment. Two receivers and a teletype printer are also shown, connected for diversity operation. The two converters are identical and one ls shown as a single block for simplicity. The receivers may be operating in apace diversity or frequency diversity on any radio frequency within their ranges.

The converter circuits represented by the blocks are discussed separately in the following paragraphs. Reference should be made to the
overall schematic, figure 6-5. For the functions of the individual component parts of figure 6-5, refer to the parts list, table 7-1, Section 7.

\section*{4-2. FUNCTIONAL SECTIONS.}
a. GENERAL. - Each converter is a single urit, with the filters and transformers mounted around the sides of printed circuit boards. In the following paragraphs, the converter is covered as three functional sections: 1) signal processing circuits, 2) keyer circuits, and 3) power supplies (see figure 4-2). Waveforms at significant test points are illustrated in table 5-5. Refer to the overall schematic, figure 6-5, during the detailed theory which follows.
b. SIGNAL PROCESSING CIRCUITS. - The input signal from the receiver is applied to the AU'DIO INPUT connector J2 (figure 6-5). A centertap is provided at STANDOFF E1 for the accommodation of balanced inputs. The input transformer matches the 8000 ohm impedance of the bandpass filter to the 600 ohm line from the receiver. The input transformer is encased with the bandpass filter in Zl .
(1) BANDPASS F LLTERS. - The bandpass filters attenuate high frequency noise pulses while passing both extremes of the shifted audio signal to the limiter. Selection of the correct filter for the shift-width of the input signal is made by section \(A\) of the SHIFT switch, S1. The narrow filter, Z1, is used when the center frequency of the input signal is 1000 cycles per second ( cps ) with shifts of 5 to 100 cps each side of center. The wide filter, FL1, is used when the center frequency of the input signal is 2550 cps with shifts of 100 to 500 cps each side of center. The characteristics of the
bandpass filters are given in table 6-2.
(2) LIMITER. - The limiter holds the output level at the detector to within 2 db with Input-signals of from 60 microwatts to 60 milliwatts. The limiter consists of two 1 N538 silicon diodes, CR1 and CR2, connected in parallel with opposite polarities grounded. These diodes have a very high forward resistance to signals below approximately 0.6 volt in amplitude. Their resistance is very low to sifnals of greater amplitude. By maintaining the signal level at approximately 0.6 volt, strong noise pulses are removed from the input signal and the signal to the discriminator is held at a constant level with fading input signals. The limiter output is amplified by Q1, a common-emitter amplifier that uses the LEVEL control, R4, as a collector load. The LEVEL control is used for adjustment of the signal level to the discriminators. The signal level during reception of a narrow-sinift signal must be higher than when receiving a wide-shift signal. The amplified signal is applied to the discriminator through section B of SHIFT switch Sl.
(3) DISCRIMINATORS. - The discriminators are frequency-selective networks that determine the frequency versus amplitude slope of the mark and space signals. Each discriminator consists of two resonant networks with overlapping frequency response patterns (see figure 4-3).

The narrow-shift discriminator, FL2, is used for signals with shlft-widths of from 10 to 200 cps . The output from terminal 1 of the narrow-shift discriminator increases with frequency to a maximum at about 1200 cps . At terminal 4 the output increases as frequency decreases to a maximum at about 800 cps. The cross-over point at which


Figure 4-1. Frequency-Shift Receiving Systerr, Simplified Block Diagram



NARROW-SHIFT
DISCRIMINATOR, FL2


DISCRIMINATOR, FL3
Figure 4-3. Discriminator Response Curves
the voltages from terminals 1 and 4 are equal is \(1000 \mathrm{cps} \pm 15 \mathrm{cps}\).

The wide-shift discriminator, FL3, is used for input signals with shift-widthe between 200 and 1000 cps . The wide-shift discriminator contains two resonant networks with a cross-over frequency of \(2550 \mathrm{cps} \pm 40 \mathrm{cps}\). The output from terminal 1 increases with frequency to about 3400 cps . The output from terminal 4 increases as frequency decreases to a maximum at approximately 1700 cps .

The output from terminal \(I\) of the discriminator
is applied to the first mark amplifier, and the output from terminal 4 is applied to the first space amplifier. The characteristics of the discriminators are given in figure 6-1.
(4) MARK-SPACE AMPLIFIERS. - The first mark amplifier, Q2, is common-emitter connected. Fixed base biasing is provided by R11 and R12. The MARK GAIN control, R96, provides adjustment of the signal gain by controlling degeneration in the emitter circuit. The mark signal is coupled from the collector of Q2 to the base of Q4, the second
mark amplifier, by C8. The space amplifiers, Q3 and Q5, are identical to the mark amplifiers. The SPACE GAIN control is R17. The MARK GAIN and SPACE GAIN controls allow equalizing the mark and space amplifier outputs at the cross-over frequencies. The mark amplifier output signal is applied to the primary of discriminator transformer T1. The space amplifier output is applied to the primary of discriminator transformer T2.
(5) DETECTOR. - The detector rectifies and combines the outputs of the discriminator transformers into a pulsating de which contains the markspace intelligence. The mark signal at the secondary of T1 is full-wave rectified by CR3 and CR4, and the space signal at the secondary of T2 is full-wave rectified by CR5 and CR6. The rectified mark and space signals are next combined across R25 and R26 (see figure 4-4). The de signal from the detector is applied to the POLARITY switch, S2.


IF \(E_{m} \geq E_{s}\), OUTPUT VOLTAGE IS POSITIVE IF \(E_{m}^{m}<E_{s}\), OUTPUT VOLTAGE IS NEGATIVE

Figure 4-4. Discriminator Detector, Simplified Diagram

In conventional frequency-shift keying transmissions, the high frequency portion of the shifted signal corresponds to teletype mark pulses and the low frequency corresponds to space pulses. Because of unusual conditions, the mark-space relationship may be reversed. When such reversed characters are applied to a teletype printer, garbled copy results. The POLARITY switch, S 2 , is provided for inverting the mark-space relationship when required.
(6) KEYING FILTER. - The low-pass keying filter, FL4, removes noise pulses and the carrier from the signal at the output of the detector. The
keying filter consists of two sections, with selection being made by the position of the SPEED switch, S3. When the switch is in the SLOW position, the keying filter section passes keying signals up to 100 words per minute, and attenuates all frequencies above 45 cps . The other section of the keying filter, selected by the FAST position of the SPEED switch, passes keying signals up to 400 words per minute (four-channel, time-division multiplex, up to 100 words per minute per channel), and attenuates all frequencies above 180 cps . Keying filter characteristics are included in table 6-2.
c. KEYER CIRCUITS. - The pulsating de signals from the detector are converted by the keyer circuits into off-on pulses for operation of the teletype printer relay.
(1) DC DIFFERENTIAL AMPLIFIER. - The dc differential amplifier provides amplification of the mark-space signals before they are applied to the dc limiter. Transistors Q6 and Q9 comprise an emitter-coupled amplifier. The input to the base terminal of Q6 is the output signal from the keying filter; the input to the base terminal of Q9 is supplied by Q10, via the feedback resistor, R41, from the output of the dc differential amplifier. These two signals are amplified by another emitter-coupled amplifier consisting of Q7 and Q8. The two signals (input and feedback) are mixed in Q8 and then applied to the base terminal of the output transistor, Q10. Zener diodes CR7 and CR8 establish -32 volts at the emitter of Q10.

The feedback from the output to the base of Q9 stabilizes the gain of the dc differential amplifier over wide temperature variations. The VERTICAL CTR control, R31, is adjusted for vertical centering of the tuning indicator display and establishes zero balance of the amplifier. The LIN (linearity) control, R39, (part of the voltage divider for the base terminal of Q10), is provided to adjust the bias of Q10 for the most linear signal capability.

The input signal to the base of Q6 is approximately \(\pm 1.7\) volts for the mark and space signals. The dc differential amplifier raises this level to approximately \(\pm 20\) volts. This level is suitable for operating the mark lock-up, the tuning indicator, the axis restorer, and subsequent keying circuitry.
(2) AXIS RESTORER. - The axis restorer maintains the signal axis at ground potential and restores signal symmetry when the transmitter or receiver frequency drifts during operation. The positive mark signal from the dc differential amplifier charges C17 and C18 through CR9 which clamps the signal to ground. The negative space signal
charges C19 and C20 through CR10 which clamps the signal to ground. The signals are combined again through R45 and R46. By clamping both the mark and space signals separately and then recombining them, the signal axis is automatically placed at ground potential: The signal is coupled to the comparator through the FUNCTION switch, 54.
(3) COMPARATOR. - The main function of the comparator is to compare the strength of signals from the two receivers during diversity operation, and allow only the stronger signal to be applied to the de limiter. The comparator consists of CR14, CR15, CR16, CR17, R54, and, R55. In diversity operation, two converters are used with two receivers for the operation of a single teletype printer. The signals are compared at the comparator in each of the converters (see figure \(4-5\) ), with the stronger signal being applied to the de limiter. The FUNCTION switch, S4, on both converters must be placed at DIVERSITY. The teletype printer may be connected to either converter.


Figure 4-5. Comparator Circuit, Simplified Schematic Diagram
In figure 4-5, the peak amplitudes of both input signals are equal but the signal from converter \(A\) contains noise. The signal from converter \(B\) has a constant peak value of \(\pm 20\) volts and will develop a greater voltage across R54 and R55. This places a reverse bias of two volts on CR14 and CR16, pre-
venting converter A from actuating the dc limiter. The FUNCTION switch, S4, has two other positions, SINGLE and TUNE. In the SINGLE position, the positive mark pulses cause CR16 to conduct and negative space pulses cause CR14 to conduct. In the TUNE position, the signal input to the de limiter is removed while the receiver is being tuned. A small, positive voltage is applied to the dc limiter input by R56 and R57 to lock up the teletype printer during the interruption in the input signal. Without this positive voltage, the teletype printer would run open.
(4) DC LIMITER. - The de limiter, ?13, Q14, Q15, Q16, and associated circuit, is a class B pushpull circuit which supplies approximately 20 db of post-detection limiting and alds in proper operation during reception of signals containing strong noise pulses. The signal from the comparator is applied simultaneously to the base terminals of \(\cap 13\) (an npn transistor), and Q15 (a pnp transistor). A positive mark signal causes Q13 to conduct but cuts off Q15. The collector of 13 is direct-coupled to the base of Q14. The signal is phase-shifted 180 degrees by Q13, causing Q14, a pnp transistor, to conduct and deliver a strong positive signal at its output. A negative space signal causes Q15 to conduct but cuts off Q13. The collector of Q15 is direct-coupled to the base of Q16 (an npn transistor), and because of the 180 degree signal voltage phase-shift, Q16 conducts and delivers a strong negative signal at its output. The de limiter controls the switching action of the loop keyer.
(5) LOOP KEYER. - The function of the loop keyer, Q17, Q18, and associated circult, is operation of the teletype printer loop relay. The teletype printer loop keyer circuit consists of a 120 volt dc power supply, a relay winding, and a variable resistor used for adjusting the loop current to 60 ma (see figure 4-6). The 120 volt dc at J6 1 s applied across Q17, Q18, and K 67 in series. When a positive (mark) signal is applied to the base of Q18, the forward base-emitter bias of Q18 is increased and Q18 conducts heavily. The heavy emitter-collector current in Q18 causes the emitter of Q17 to become more negative and Q17 conducts. closing the teletype printer keying relay. When a negative (space) signal is applied to the base of Q18. the forward base-emitter bias is reduced. This lowers the emitter-collector current of Q18 and the forward base-emitter bias of Q17, opening the teletype printer relay. The relay remains open until another positive (mark) signal is applied. Dlode CR19 prevents a large emitter-base voltage (caused by an increase in the emitter-collector resistance of Q18) from damaging the emitter junction of Q17. Diode CRI8 prevents the teletype power supply
( +120 volts) from feeding into the converter +48 volt supply. Diode CR20 prevents damage to the converter in the event the teletype power supply is reversed. Zener diodes CR21 and CR22 protect Q17 and Q18 from the inductive kickback voltage produced in the teletype printer relay.
(6) MARK LOCK-UP. - The mark lock-up provides a strong, artificial mark signal to the dc limiter during traffic interruptions. If a deep fade occurred or if the signal-to-noise ratio were very low, noise pulses could cancel the small positive bias on the dc limiter input, provided by R56 and R57, and allow garbled copy to be printed. A steady mark signal is transmitted between messages. This steady mark signal charges C17 in the axis restorer allowing no signal to be applied to the de limiter. The mark lock-up, Q11, Q12, and circuit, provides a bypass around the axis restorer (shown as dashed line in figure 4-2) during these signal interruptions.

During normal keying pulses, C19 charges through CR10 on the negative space pulses and slowly discharges through R48 and CR12, keeping Q11 cut off. While Q11 is cut off, Q12 conducts heavily (having a high base-emitter forward bias), reducing the voltage at the junction of R52 and R53 to near zero. When the keying pulses stop, the charge on C19 leaks off to the point where Q11 conducts, removing the forward bias from Q12 and causing it to cut off. When Q12 is cut off, +48 volts is supplied to the de limiter from the junction of R52 and R53. When keying is resumed, the first mark-to-space transition charges C19 to a level which cuts off Q11 and turns on Q12, removing the artificial mark sigdal.
(7) TUNING INDICATOR. - Tuning indicator V1 is a 2BP1 cathode-ray tube. Horizontal deflection voltage ( 60 cps ) is obtained from the high voltage transformer T4. Controls for HORIZontal CENTERING, FOCUS, INTensity, VERTical ADJustment, VERTical CTR, and LINearity (R77, R92, R93, R80, R31, and R39, respectively) are provided on the converter chassis as screwdriver adjustments. The vertical deflection voltage is supplied from the dc differential amplifier output. When the associated receiver is tuned properly, the crt pattern will be centered vertically. The LEVEL control adjustment is correct when the horizontal lines of the pattern coincide with those on the bezel.
d. POWER SUPPLIES. - Three de power supplies furnish all operating voltages and currents required by the converter. The ac line voltage is applied to POWER receptacle, J3, on the rear of
the converter cabinet. Safety interlocks, SSA and S5B, and fuses, F1 and F2 (1/2 ampere each), are installed in the ac input lines. The indicator, DS-1, lights when power is applied to the converter by POWER switch S6. The two power transformers, T3 and T4, have tapped primaries to allow operation on line voltages of 105,115 , or 125 volts.
(1) +48 VOLT SUPPLY. - The +48 volt supply consists of a full-wave bridge rectifier and a series regulator circuit. The bridge rectifier consists of CR28, CR29, CR30, CR31, and associated circuit. The regulator consists of Q20, Q21, Q22, and circuit. An increase in output voltage increases the voltage at the arm of R89, increasing the base potential of Q22. Since the emitter voltage of Q22 is held constant by zener diode CR34, the forward base-emitter bias increases, increasing the collector current. The increased current through R87 reduces the collector voltage of Q22 and the forward base-emitter bias of Q21. The series regulator, Q20, is emitter-coupled to Q21 and the emitter-collector resistance of Q20 increases, reducing the output voltage to the correct value. If the output voltage decreases, the resistance of the series regulator decreases, increasing the output voltage to the correct value. The +48 ADJ control is provided to adjust the +48 volt supply output voltage.
(2) - 48 VOLT SUPPLY. - The -48 volt supply consists of a full-wave bridge rectifier and a series regulator circuit. The bridge rectifier consists of CR23, CR24, CR25, CR26, and associated circuit. The regulator consists of Q19, Q23, Q24, and circuit. An increase in output voltage increases the potential on the arm of R72, increasing the base potential of Q19. Since the emitter voltage of Q19 is held constant by zener diode CR27, the forward base-emitter bias increases, increasing the collector current. The increased current through R70 reduces the collector voltage of Q19 and the forward base-emitter bias of Q24. The series regulator, Q23, is emitter-coupled to Q24 and the emitter-collector resistance of Q23 increases, reducing the output voltage to the correct value. If the output voltage decreases, the resistance of the series regulator decreases, increasing the output voltage to the correct value. The -48 ADD control is provided to adjust the -48 volt supply output voltage.
(3) -560 VOLT SUPPLY. - The -560 volt supply uses two 1 N 1731 diodes, CR32 and CR33, series connected as a half-wave rectifier. A voltage divider consisting of R91, R92, R93, and R94 provide the high voltages required by the crt.


Figure 4-6. Loop Keyer and Teletype Printer Keying Circuits

\section*{万-1. CitNFRAL。}

Comparator-Converter Group AN/URA-17, hereinafter referred to as the AN/URA-17, is part of a system for the reception and recording of transmitted teletype messages.

The AN/URA-17 consists of two Frequency Shist Converters CV-483/URA-17, hereinafter referred to as the converters.

Maintenance personnel should be thoroughly familiar with the operation of the overall frequencyshift recelving system, and the function of each equipment used. The receivers and teletype printers used with the AN/URA-17 should be tested, adjusted, and maintained in accordance with their individual maintenance instructions.

Prior to trouble-shooting the AN/URA-17, the technician should become familiar with the equipment operation during normal conditions. By keeping records of discrepancies occurring during operation, it may be possible to prevent equipment breakdown by foreseeing fallures. It is mandatory that maintenance personnel read Sections 1, 3, and 4 of this technical manual before performing any trouble-shooting procedures.

It is assumed that maintenance personnel are experienced in standard methods of testing and repairing naval electronic equipment; therefore, detailed descriptions of common tests are not given.

As an aid in trouble-shooting, the following system of test point symbols is used in tables and illustrations of this manual. The major test point symbol consists of the test point number enclosed within a star. The secondary test point symbol consists of the test point letter enclosed within a circle. Flgure 5-2 shows locations of all test points used in this manual. In the text, major test points are shown as \(\$ 1\), \(\star 2\), etc., and secondary test points are shown as A, B, etc.

\section*{5-2. TEST EQUIPMENT AND SPECIAL TOOLS.}
a. TEST EQUIPMENT. - The following test squipment, or the equivalent (refer to table 1-3), will be required:
\begin{tabular}{ll} 
DuMont 304-A & oscilloscope \\
\(\mathrm{ME}-30 / \mathrm{U}\) & ac vtvm \\
\(\mathrm{AN} / \mathrm{PSM}-4\) & multimeter \\
\(\mathrm{TS}-1100 / \mathrm{U}\) & test set, transistor
\end{tabular}
b. SPECIAL TOOLS. - No special tools will be required.

\section*{5-3. OVERALL TROUBLE-SHOOTENG}
a. PRELIMINARY CHFCK. - A preliminary chēck of the equipment should be made before proceeding to the trouble-shooling charts. The first and most natural step in trouble-shooting is to analyze the symptoms of the equipment. Often the conclusions reached will aid the techniclan in selecting the test(s) that will most quickly locate the cause of trouble. The operator's maintenance tests in Section 3 will be of assistance in making this analysis. Normally, the malfunction can be traced to the receiver, the teletype printer, or one of the converters.

When possible, use sensory tests, such as visually checking parts (fuses, resistors, capacitors, etc.), and smelling or feeling for signs of overheating. Simple tests often will reveal the difficulty.

\section*{NOTE}

If, during the preliminary check, a part is found that is responsible for the malfunction, determine what caused its fallure before replacing it.

Malfuncıions other than the result of faulty transmission, bad receiving conditions, or improper operating methods must first be localized to one of the system components. If the evidence is not definite, a simple expedient is to substitute equipment known to be In proper operating condition for the suspected equipment.

The recelver may be tested independently by monitoring the audio output with a headset or loudspeaker and tuning in various signals.

The teletype printer may be checked with signals from another source of known accuracy, such as another teletype circult.

The best method of testing the converter is by recording its output with a teletype printer or other automatic recorder.

During the tests given in the following paragraphs, the converter is to be connected to a receiver adjusted to receive fsk signals and a teletype printer is to be connected to the output of the converter. The receiver and teletype printer are to be in satisfactory operating condition.
b. TEST EQUIPMENT AND SPECIAL' TOOLS. No test equipment or special tools are required.
c. CONTROL SETTINGS. - Set the converter controls as follows:
(1) LEVEL control to 0 .
(2) SHIFT switch to NARROW.
(3) FUNCTION switch to TUNE.
(4) POLARITY switch to NORMAL.
(5) SPEED switch to SLOW.
(6) POWER switch to Off (down).
d. SYSTEM TROUBLE-SHOOTING CHART. The system trouble-shooting chart, table 5-1, will aid the technician in isolating a malfunction to a functional section (paragraph 5-4): Table 5-1 is arranged so as to utilize the converter's front panel indicators as a means of determining which functional section is defective.

If the technician is thoroughly familiar with the equipment, he may start directly with functional section trouble-shooting. Refer to the overall schematic diagram, figure 6-5, during performance of the trouble-shooting procedures.
(1) MALFUNCTION DURING SNNGLERECEIVER OPERATION. - If the equipment is rejected for malfunction during single-receiver operation, perform the procedures listed in table 5-1

TABLE 5-1. FREQUENCY SHIFT CONVERTER CV-483/URA-17, SYSTEM TROUBLE-SHOOTING CHART
\begin{tabular}{|c|c|c|c|}
\hline STEP & PRELIMINARY
ACTION & NORMAL INDICATION & NEXT STEP \\
\hline 1 & Turn converter POWER switch to On. & Indicator lamp glows. & If lamp glows, proceed to step 2; if not, proceed to table 5-4, step 1. \\
\hline 2 & Connect fsk receiver audio output to AUDIO INPUT Jack (J2) at rear of converter cabinet. Adjust receiver and converter controls for single-receiver operation (Section 3, paragraph 3-2g(1), steps 1 through 10). & Tuning indicator pattern as (A) in figure 3-2. & If pattern is ok, proceed to step 3 ; if not, proceed to table 5-2, step 1. \\
\hline 3 & Connect teletype printer to TTY OUTPUT jack (J6) at rear of converter. & Teletype printer prints readable copy. & If teletripe printer does not print readable copy, place POLARITY switch to IREVERSE. If trouble still pursists, proceed to table 5-3. \\
\hline
\end{tabular}

- FOR COMPONENTS MOUNTED ON TB-1,REFER TO FIGURE 6-4
- FOR COMPONENTS MOUNTED ON TB-2, REFER TO FIGURE 6-3.

Figure 5-1. Frequency Shift Converter CV-483/URA-17, Parts Location
(2) MALFUNCTION DURING DIVERSITY OPERATION. - If the equipment is rejected for malfunction during diversity operation, proceed as follows:

Step 1. Check each converter for single-receiver operation (Section 3, paragraph 3-2g(1)). If operation is satisfactory, continue with step 2 of this paragraph. If not, perform the procedures listed in table 5-1.
Step 2. Perform steps in Section 3, paragraph \(3-4 \mathrm{c}\). If, upon completion of the diversity check listed in paragraph 3-4 \(\underline{c}\), the teletype printer does not print, check CRI5 and CR17 (figure 6-3) in converter to which teletype printer is connected.

\section*{5-4. FUNCTIONAL SECTION TROUBLESHOOTING.}
a. GENERAL. - Functional eection troubleshooting will aid the technician in isolating the malfunction to a defective part or parts. Tables 5-2, 5-3, and 5-4 are the functional section troubleshooting charts for the three functional sections of this equipment: i.e., signal processing circuits; keyer circuits; and power supplies.

\section*{b. SIGNAL PROCESSING CIRCUITS TROUBLESHOOTING.}
(1) PRELIMUNARY CHECK. - The preliminary check for functional trouble-shooting of the
signal processing circuits is the same as the preliminary check for overall trouble-shooting (refer to paragraph 5-3a).

\section*{(2) TEST EQUIPMENT AND SPECIAL} TOOLS.
(a) TEST EQUIPMENT. - The following test equipment will be required:

DuMont 304-A
oscilloscope
ME-30/U
AN/PSM-4
TS-1100/U
ac vtvm multimeter test set, transistor
(b) SPECIAL TOOLS. - No special tools will be required.
(3) CONTROL SETTINGS. - The control settings for the converter during functional trouble-shooting of the signal processing circuits
are the same as the control settings for overall trouble-shooting (refer to paragraph 5-3c).
(4) ILLUSTRATIONS.
(a) TEST POINTS. - Figure 5-2 illustrates the physical locations of all test points to be used in functional section trouble-shooting.
(b) SCHEMATIC DIAGRAMS. - Figure 5-4 is the schematic diagram of the signal processing circuits.
(c) VOLTAGE AND RESISTANCE DIAGRAM. - Figure 5-3 lists de voltages and resistance measured from the terminals of the transistors in the signal processing circuits to the converter chassis, with no signal applied.


Figure 5-2. Frequency Shift Converter CV-483/URA-17, Location of Test Points

TABLE 5-2. FREQUENCY SHIFT CONVERTER CV-483/URA-17, SIGNAL PROCESSING CIRCUITS FUNCTIONAL SECTION TROUBLE-SHOOTING CHART
\begin{tabular}{|c|c|c|c|c|}
\hline STEP & TEST POINT & PRELIMINARY ACTION & NORMAL INDICATION & NEXT STEP \\
\hline 1 & & Connect fsk receiver audio output to AUDIO INPUT jack (J2) at rear of converter. Adjust receiver and converter controls for singlereceiver operation (Section 3, paragraph 3-2g(1), steps 1 through 10). & Tuning indicator pattern as (A) in figure 3-2. & \begin{tabular}{l}
(1) If pattern shifts unevenly above and below center line of crt bezel: recheck receiver tuning. If receiver tuning is ok, proceed to table 5-4, step 2; check Q2, Q3, Q4, and Q5 (figure 6-3); measure dc voltages on Q2, Q3, Q4, and Q5 terminals (figure 5-3); measure resistances of T1 and T2 windings (figures 5-1 and 6-2); check CR3, CR4, CR5, and CR6 (figure 6-3); measure resistances of R25 and R26 (figure 6-3); realign mark-space amplifiers (Section 6, paragraph 6-2h). \\
(2) If pattern shifts up only: recheck receiver tuning. If receiver tuning is ok, proceed to table 5-4, step 2; check Q3 and Q5 (figure 6-3); measure dc voltages on Q3 and Q5 terminals (figure 5-3); measure resistances of T2 windings (figures \(5-1\) and 6-2); measure resistance of R26 (figure 6-3); check CR5 and CR6 (figure 6-3). \\
(3) If pattern shifts down only: recheck receiver tuning. If receiver tuning is ok, proceed to table 5-4, step 2; check Q2 and Q4 (figure 6-3); measure dc voltages on terminals of 02 and Q4 (figure 5-3); measure resistances of Tl windings (figures 5-1 and 6-2); measure resistance of R25 (figure 6-3); check CR3 and CR4 (figure 6-3). \\
(4) If pattern's vertical amplitude is very small or zero: check LEVEL control setting. If LEVEL control setting is ok, proceed to table 5-4, step 2; check Q1 through Q10 (figures 6-3 and 6-4); measure dc voltages on terminals of Q1 through Q10 (figure 5-3). Realign dc amplifier (Section 6, paragraph 6-2i). If upon completion of dc amplifier alignment the trouble still persists, proceed to step 2.
\end{tabular} \\
\hline
\end{tabular}

TABLE. \(\overline{-2}\) 2. FREQUENCY SHIFT CONVERTER CV-483/URA-17,
SIGKA L PROCESSING CIRCUITS FUNCTIONAL SECTION
TIßOUBLE-SHOOTING CHART (Continued)

(d) SIGNAL TRACING OSCILLOSCOPE PATTERNS. - Table 5-5 illustrates oscilloscope patterns to be used as guides during signal tracing.
(e) ALIGNMENT OF THE CONVERTER AFTER TROUBLE-SHOOTING. - After troubleshooting the signal processing circuits, if repairs or component changes were made, refer to Section 6, paragraph 6-2, for alignment procedures. Table 6-1 lists adjustments required after specific transistors are replaced or values in the circuits of these transistors are changed.

\section*{c. KEYER CIRCUITS TROUBLE-SHOOTING.}
(1) PRELIMINARYCHECK. - The preliminary check for functional trouble-shooting the
keyer circuits is the same as the preliminary check for overall trouble-shooting (refer to paragraph 5-3a).
(2) TEST EQUIPMENT AND SPECIAL TOOLS.
(a) TEST EQUIPMENT. - The following test equipment will be required:
\begin{tabular}{ll} 
DuMont 304-A & oscilloscope \\
ME-30;U & ac vtvm \\
AN/PSM-4 & multimeter \\
TS-1100; U & test set, transistor
\end{tabular}
(b) SPECIAL TOOLS. - No special tools will be required.


Figure 5-3. Frequency Shift Converter CV-483/URA-17, Signal Processing Circuits, Voltage and Resistance Measurements
(3) CONTROL SETTINGS. - The control qettings for the converter during functional troubleshooting of the weyer circuits are the same as the control settings for overall trouble-shooting (refer to paragraph 5-3c.
(4) ILLUSTRATIONS.
(a) TEST POINTS. - Figure 5-2 illustrates the physical locations of all test points to be
used in functional section trouble-shooting.
(b) SCHEMATIC DIAGRAMS. - Figure 5-6 is the schematic diagram of the keyer circuits.
(c) VOLTAGE AND RESTSTANCE

DIAGRAM. - Figure 5-5 lists voltages and resistances measured from the terminals of the transiators in the keyer circuits to the converter chassis, with no signal applied.


WAVEFORMS SHOWN RERRESENT AN "R" CHARACTER

 CHARACTER REPTHTION RATE. WHEN SWEF IS NO
IN SYNC WITH CHARACTER REFTITITN RATE OR
 WAVEFORM WIL NOT BE SHOWN BUT VARIOUS COM-
BINAIIONS OF MOVING SHARACTERS WILL NORMALY

Notes:
UNLESS OTHERWISE SPECIFED
ALL CAPACITORS ARE IN
UF ALL RESIITORS ARE IN OHMS
2. UNLESS OTHERWES INDICATE,

3. All voltages are dc
- ALL ROAARY SWITCHES SHOWN

IN FULY CCW POSIIIONS UNLESS
OTHEWWIS SPECIFIED
5. \(\square\) INDILARES FRONT PANEL
6. Arrows on variable reistors
inolcate clockwis rotation

REFER TO FIGURE 6 -2 FOR
RTANSFORMES
NND FUTER
ReANSFRAMER AND FITTER
RESISANCS
Figure e-4. Frequency Shitt Converter CV-483/URA-17,
Signal Processing Circuits, Functionai Schematic Diagram

TABLE 5-3. FREQUENCY SHIFT CONVERTER CV-483/URA-17, KEYER CIRCUITS FUNCTIONAL SECTION TROUBLE-SHOOTING CHART
\begin{tabular}{|c|c|c|c|c|}
\hline STEP & TEST POINT & \begin{tabular}{l}
PRELIMINARY \\
ACTION
\end{tabular} & NORMAL INDICATION & NEXT STEP \\
\hline 1 & & \begin{tabular}{l}
Connect fsk receiver audio output to AUDIO INPUT jack (J2) at rear of converter. Connect teletype printer to TTY OUTPUT jack (J6) at rear of converter. Adjust receiver and converter controls for single-receiver operation (Section \\
3, paragraph \(3-2 \mathrm{~g}(1)\) ).
\end{tabular} & Teletype printer prints readable copy. & \begin{tabular}{l}
If teletype printer is locked up: check Q11 through Q18 (figures 6-3 and 6-4); measure dc voltages on terminals of Q11 through Q18 (figure 5-5). \\
If teletype printer runs open: check Q13 through Q18 (figure 6-3); measure de voltages on terminals of Q13 through Q18 (figure 5-5). \\
If trouble still persists, proceed to step 2.
\end{tabular} \\
\hline \multirow[t]{2}{*}{2} & & Set up oscilloscope to display low frequency signals. Connect oscilloscope ground terminal to converter chassis. & & If ok, measure resistance of R67 (figure 6-3); check CR20 (figure 6-3). \\
\hline & (Figures 5-2 and 5-6) & Touch vertical input lead to TP-5. & Pattern as in step 6 of table 5-5. & If pattern is not ok: check Q13 through Q16 (figure 6-3): measure dc voltages on terminals of Q13 through Q16 (figure 5-5). \\
\hline
\end{tabular}
(d) SIGNAL TRACING OSCILLOSCOPE PATTERNS. - Table 5-5 illustrates oscilloscope patterns to be used as guides during signal tracing.

\section*{(e) ALIGNMENT OF THE CONVERTER}

AFTER TROUBLE-SHOOTING. - After troubleshooting the keyer circuits, if repairs or component changes were made, refer to Section 6, paragraph 6-2, for alignment procedures. Table 6-1 lists adjustments required after specific transistors are replaced or values in the circuits of these transistors are changed.
d. POWER SUPPLIES TROUBLE-SHOOTING.
(1) PRELIMINARY CHECK. - The prelimi-
nary check for functional trouble-shooting the power supplies is the same as the preliminary check for overall trouble-shooting (refer to paragraph 5-3a).
(2) TEST E@UIPMENT AND SPECIAL TOOLS.
(a) TEST EQUIPMENT. - The following test equipment will be required:

> AN/PSM-4 multimeter
> ME-30/U ac vtvm
> TS-1100/U test set, transistor
(b) SPECIAL TOOLS. - No special tools will be required.


Figure 5-5. Frequency Shift Converter CV-483/URA-17, Keyer Circuits.
Voltage and Resistance Measurements


TABLE 5-4. Fl.EQUENCY SHIFT CONVERTER CV-483/URA-17, POW -R SUPPLIES FUNCTIONAL SECTION TROUBLE-SHOOTING CHART
\begin{tabular}{|c|c|c|c|c|}
\hline STEP & TEST POINT & PRELIMINARY ACTION & NORMAL INDICATION & NEXT STEP \\
\hline 1 & & Turn converter POWER switch to On. & Indicator lamp glows. & \begin{tabular}{l}
If lamp glows, proceed to step 2. \\
If lamp does not glow: \\
(1) Check indicator lamp (paragraph 3-4d). \\
(2) Check fuses F1 and F2 on front panel (refer to paragraph 3-4e). \\
(3) Check that chassis is fully closed (table 3-3). If ok, loosen the reptive screw at each corner of front panel, pull chassis forward to stops, and check interlock switches 50 A and S5B (figure 2-10). \\
(4) Check that chassis plug P1 (figure 6-3) and POWER plug (on rear of cabinet) are properly connected to mating receptacles. \\
(5) Check line voltage source. \\
(6) Check POWER switch (figurc 3-1).
\end{tabular} \\
\hline 2 & \begin{tabular}{l}
(Figures \\
5-2 and \\
5-8)
\end{tabular} & Turn converter POWER switch to Off. Adjust multimeter to measure -560 volts dc. Connect positive lead of niultimeter to converter chassis. Connect negative lead of multimeter to TP-6. Turn converter POWER switch to On. & -560 volts \(\pm 10 \%\) & If ok, continue with step 2. If not, check CR32 and CR33 (figure 6-4); measure R84 (figure 6-4). \\
\hline 3 & \begin{tabular}{l}
(Figures \\
5-2 and \\
5-8)
\end{tabular} & Adjust multimeter to measure -48 volts dc. Connect positive lead of multimeter to converter chassis. Connect negative lead of multimeter to TP-7. & -48 volts \(\pm 10 \%\) & If ok, continue with step 3 . If not, adjust -48 ADJ control R72 (fiqure 5-1) as required; check Q19, Q23, and Q24 (figure 6-4); measure dc voltages at terminals of Q19, Q23, and Q24 (figures 5-7 and 6-4) \\
\hline 4 & \begin{tabular}{l}
(Figures \\
5-2 and 5-8)
\end{tabular} & Adjust multimeter to measure +48 volts dc. Connect negative lead of multimeter to converter chassis. Connect positive lead of multimeter to TP-8. & +48 volts \(\pm 10 \%\) & If incol rect, adjust +48 ADJ control R89 (figure 5-1) as required; check Q20, Q21, and (२22 (figure 6-4); measure dc voltages at ierminals of Q20, Q21, and Q22 (figures \(5-7\) and 6-4. If, upon completion of the trouble-snooting procedure given in this task, the tuning indicator pattern is not as (A) in figure 3-2, proceed to table 5-2 and applicable step. \\
\hline
\end{tabular}


NO TES:
\(\checkmark\) INDICATES DC VOLTAGE TO CHASSIS WITH VTVM (NO SIGNAL8'
R INDICATES RESISTANCE (IN OHMS) TO CHASSIS WITH POWER SWITCH OFF.
- VARIABLE.DEPE NDS UPON C(JNTROL SE TTING.

Figure 5-7. Frequency Shift Converter CV-483/URA-17, Power Supplies, Voltage and Resistance Measurements

oss
1. UNLESS OTHERWISE SPECIFIED: ALL CAPACITORS ARE IN ALL RESISTORS ARE IN OHMS ALL RESISTORS 1/2 WATY \(10 \%\)
\(\mathrm{~K}=1000 \quad \mathrm{MEG}=1,000,000\)
2. UNLESS OTHERWISE INDICATED: all voltages taken to chassis WITH 20,000 OHM NOLT VOLTMETER,
. EXCEPT FOR POWER TRANSFORMER
voltages. all voltages are dc
4.

INDICATES FRONT PANEL CONTROL
6. ARROWS ON VARIAbLE RESistors indicate clockwise rotation.
(3) CONTROL SETTINGS. - The control settings for the converter during functional troubleshooting of the power supplies are the same as the control settings for overall trouble-shooting (refer to paragraph 5-3c).
(4) ILLUSTRATIONS.
(a) TEST POINTS. - Figure 5-2 illustrates the physical locations of all test points to be used in functional section trouble-shooting.
(b) SCHEMATIC DIAGRAMS. - Figure \(5-8\) is the schematic diagram of the power supplies. Figure 5-9 is the primary power distribution diagram.
(c) VOLTAGE AND RESISTANCE DIAGRAM. - Figure 5-7 lists voltages and resistances measured from transistor terminals of the power supplies to the converter chassis with no signal applied.
(d) ADJUSTMENT OF POWER

SUPPLIES. - After trouble-shooting the power supplies, if repairs or component changes were made, refer to Section 6, paragraph 6-2, for adjustment procedures.

\section*{5-5. TYPICAL TROUBLES.}

Table 5-6 lists typical troubles that may occur during the service life of the AN/URA-17.

5-6. LOCATION OF PARTS.
Figures 6-3 and 6-4 illustrate the location of all circuit elements that may require replacement during the service life of the AN/URA-17.


Figure 5-9. Frequency Shift Converter CV-483/URA-17, Primary Power Distribution Diagram

TABLE 5-5. SIGNAL TRACING OSCILLOSCOPE PATTERNS*
\begin{tabular}{|c|c|c|c|}
\hline STEP & TEST POINT & WAVEFORM & NOTES \\
\hline 1 & \begin{tabular}{l}
(A) \\
(figure 5-2)
\end{tabular} & ค込 & Terminal 1 of S1-A (figure 6-3) \\
\hline 2 & (figure
\[
5-2)
\] &  & \\
\hline 3 & (figure
5-2) &  & \\
\hline 4 & \[
\xrightarrow[\substack{\text { figure } \\ 5-2 \text { ) }}]{\substack{3 \\ \hline}}
\] & 10. & \\
\hline 5 & \[
\xrightarrow[\substack{\text { (figure } \\ 5-2 \text { ) }}]{\substack{4 \\ \hline}}
\] &  & \\
\hline 6 & \[
\underset{\substack{\text { (figure } \\ 5-2)}}{5}
\] &  & \\
\hline 7 & \begin{tabular}{l}
B \\
(figure 5-2)
\end{tabular} &  & Junction of R45 and R46 (figure 6-4) \\
\hline 8 & \begin{tabular}{l}
C \\
(figure
\[
5-2)
\]
\end{tabular} &  & Collector terminais of Q14 and Q16 (figure 6-3) \\
\hline
\end{tabular}

\footnotetext{
*Waveforms shown represent reception of an "R" character repeated continuously by a tape-fed transmitter and displayed on an oscilloscope whose sweep is operating at the character repetition rate. When recelv. ing mixed characters or the sweep ls not in sync with the character repetition rate, varlous moving characters will normally be displayed.
}

TABLE 5-6. FREQUENCY SHIFT CONVERTER CV-483/URA-17. TYPICAL TROUBLES
\begin{tabular}{|c|c|c|}
\hline TROUBLE & NATURE OF TROUBLE & SYMPTOMS \\
\hline \multirow[t]{3}{*}{Teletype printer runs open.} & \begin{tabular}{l}
Fuses blown (F1 or F 2, on front panel of converter). \\
Ac power not on. \\
Defective connection on power input cable. \\
Defective POWER input receptacle (on rear of converter cabinet). \\
Safety interlock switches open or defective (figure 2-10).
\end{tabular} & Indicator light out when POWER switch is On; no pattern on tuning indicator. \\
\hline & \begin{tabular}{l}
Receiver detuned. \\
Receiver output connection defective. \\
Defective converter.
\end{tabular} & Indicator light is on but no pattern on tuning indicator. \\
\hline & Teletype printer loop power supply defective. Loop keyer or de IImiter in converter defective. & Tuning indicator pattern normal, but teletype printer runs open. \\
\hline Teletype printer locked up. & FUNCTION switch on converter left in TUNE position. & Tuning indicator pattern normal; teletype printer locked up. \\
\hline \multirow[t]{2}{*}{Teletype printer prints garbled copy.} & Recelver not properly tuned. & Tuning indicator pattern not centered vertically. \\
\hline & POLARITY switch on converter in wrong position. & Tuning indicator pattern normal, teletype printer prints garbled copy. \\
\hline
\end{tabular}

\section*{SECTION 6}

\author{
REPAIR
}

\section*{6-1. FAILURE REPORT.}

\section*{FAILURE REPORT}
"Report each fallure of the equipment, whether caused by a defective part, wear, improper operation, or an external cause. Use ELECTRONIC FAILURE REPORT form DD787. Each pad of the forms includes full instructions for filling out the forms and forwarding them to the Bureau of Ships. However, the importance of providing complete information cannot be emphasized too much. Be sure that you include the model designation and serial number of the equipment (from the equipment identification plate), the type number and serial number of the major unit (from the major unit identification plate), and the type number and reference designation of the particular defective part (from the technical manual). Describe the cause of the failure completely, continuing on the back of the form if necessary. Do not substitute brevity for clarity. And remember--there are two sides to the failure report--

\section*{"YOUR SIDE"}
"Every FAILURE RERORT is a boost for you:
1. It shows that you are doing your job.
2. It helps make your job easier.
3. It insures available replacements.
4. It gives you a chance to pass your kowledge to every man on the team.

\section*{"BUREAU SIDE"}
"The Bureau of Ships uses the information to:
1. Evaluate present equipment.
2. Improve future equipment.
3. Order replacements for stock.
4. Prepare field changes.
5. Publish maintenance data.

Always keep a supply of failure report forms on board. You can get them from the nearest District Publications and Printing Office."

\section*{6-2. TUNING AND ADJUSTMENT.}
a. GENERAL. - Reference to this section is usually made after completion of trouble \(\rightarrow\) shooting
procedures in Section 5. If the defective part has been found, but the method of replacement is not easily determined, refer to paragraph 6-3. Table 6-1 lists adjustments required after replacing specific transistors (or components in these transistor circuits). Tests of filter characteristics are given in paragraph 6-3d(5), and tests of disciminator characteristics are given in paragraph 6-3 \({ }^{\mathrm{d}}(6)\).

The following procedures provide the required alignment for the converters. Each procedure is complete. If two or more procedures are to be periormed, reading ahead can prevent duplicating steps.

\section*{WARNING}

Dangerous voltages exist within the converter when connected to the line voltage source, even when the POWER switch is in the Off position.
b. STANDARDS. - Mainten ance Standards Book NAVSHIPS 94028.42 contains a series of maintenance standard test procedures which provide indications representing optimum equipment performance, and a series of preventative maintenance procedures. Performance Standard Sheet NAVSHIPS 94028.32 lists minimum ac ceptable limits for overall performance of the equipment.
c. TEST EQUIPMENT AND SPECIAL TOOLS. The following test equipment, or the equivalent (refer to table 1-3), will be required. Nc special tools will be required.
\[
\begin{array}{ll}
\text { ME-30/U } & \text { vtvm (two required) } \\
\text { TS-382A/U } & \text { audio oscillator } \\
\text { AN/TSM-9 } & \text { frequency meter } \\
\text { AN/PSM-4 } & \text { multimeter }
\end{array}
\]
d. SPECIAL JIGS. - No special jigs, fixtures, etc., will be required.
e. CONTROL SETTINGS. - Set the converter POWER switch to the Off position. The other converter controls will be set during the respective adjustment or alignment procedures.

\section*{f. POWER SUPPLY ADJUSTMENTS.}

\section*{(1) +48 VOLT SUPPLY.}

Step 1. Withdraw chassis to stops on drawer slides, and operate interlock switches (figure 2-10) by pressing in on button at left side of switch block.
Step 2. Connect negative lead from multimeter to chassis, and positive lead to red test point, TP- 8 (figure 5-2).
Step 3. Adjust multimeter to appropriate dc voltage scale.
Step 4. Turn converter POWER switch to \(O n\) and allow five minute warm-up period.
Step 5. Adjust +48 ADJ control, R89 (figure 5-1), for multimeter indication of +48 volts.
Step 6. Turn POWER switch to Off and disconnect multimeter leads from converter.
(2) -48 VOLT SUPPLY.

Step 1. Withdraw chassis to stops on drawer slides, and operate interlock switches (figure 2-10) by pressing in on button at left side of switch block.
Step 2. Connect positive lead from multimeter to converter chassis, and negative lead to white test point, TP- 7 (figure 5-2).
Step 3. Adjust multimeter to appropriate dc voltage scale.
Step 4. Turn converter POWER switch to On and allow five minute warm-up period.
Step 5. Adjust -48 ADJ control, R 72 (figure 5-1), for multimeter indication of -48 volts.
Step 6. Turn POWER switch to Off and disconnect multimeter leads from converter.
g. CATHODE-RAY TUBE ADIUSTMENTS.

Step 1. Withdraw chassis to stops on drawer slides, and operate interlock switches (figure 2-10) by pressing in on button at left side of switch block.
Step 2. Turn converter POWER switch to On position and al low five minute warm-up period.
Step 3. Adjust FOCUS control, R92, and INT (intensity) control, R93 (figure 2-10), for normal operation.
Step 4. Short blackitest point, TP- 4 (figure 5-2), to converter chassis with a clip lead.
Step 5. Adjust VERT ADJ control, R80 (figure 5-1), to center trace on crt bezel.
Step 6. Adjust HORIZ CENTERING control, R77 (figure 5-1), to center trace on crt bezel.
Step 7. If trace on crt bezel is not horizontal, loosen the screw in clamp at crt base
(figure 5-1), and rotate crt until trace is horizontal. Tighten screw in crt clamp.
Step 8. Turn POWER switch to Off and ren clip lead from TP- it 4 .

\section*{h. MARK AND SPACE GAIN CONTROL A@JUSTMENTS.}

Step 1. Withdra ... sis to stops on drawer slides, and operate interlock switches (figure 2-10) by pressing in on button at left side of switch block.
Step 2. Connect vtvm's and audio oscillator to power source and turn power switches on. Allow at least five minute warm-up period.
Step 3. Adjust converter LEVEL control to 6, set SHIFT switch to WIDE and SPEED switch to SLOW. Turn POWER switch to On position and allow five minute warm-up period.
Step 4. Disconnect cable from AUDIO INPUT connector, J2, on rear of converter cabinet.
Step 5. Adjust audio oscillator frequency to 2550 cps.
Step 6. Set vtvm range switch to 10 volts and connect to audio oscillator output terminals.
Step 7. Connect audio oscillator output terminals to AUDIO INPUT connector, J2, on rear of converter cabinet or to terminals 1 and 3 of 21 (figure 5-1). Adjust audio oscillator for output of 6.0 volts as measured on vtvm. Leave vtvm connected to audio oscillator terminals.
Step 8. Set range switch of second vtvm to 1 volt and connect between terminal 1 of FL3 (figure 5-1) and converter chassis. Record vtvm indication.
Step 9. Move vtvni lead from terminal 1 of FL3 to terminal 4 of FL3, Adjust vtvm range switch as required. Record vtvm indication.
Step 10. Adjust audio oscillator frequency and repeat steps 8 and 9 unt il voltages at terminals 1 and 4 of FL3 are equal. Maintain constant audio osciasdor output voltage.
Step 11. Move vtvm lead from terminal 1 or 4 of FL3 to green test point, TP- is 3 (figure 5-2). Adjust SPACE GAIN control, R17 (figure 5-1), for 4.0 volt vtvm indication.
Step 12. Move vtvm lead from green test point, TP- \(\downarrow 3\), to blue test point, TP- 2 (figure 5-2), and adjust MARK GAIN control, R96 (figure 5-1), for 4.0 volt
vtvm indication.
Step 13. Repeat steps 11 and 12 until 4.0 volt indications are obtained at TP- 2 and TP- 3 .
Step 14. Turn POWER switch to Off and disconnect audio oscillator and vtvm from converter. Reconnect cable removed from AUDIO INPUT connector, J2, on rear of converter cabinet.
i. DC DIFFERENTIAL AMPLIFIER ADJUSTMENTS.

Step 1. Withdraw chassis to stops on drawer slides, and operate interlock switches (figure 2-10) by pressing in on button at left side of switch block.
Step 2. Connect vtvm and audio oscillator to power source and turn power switches on. Allow at least five minute warm-up period.
Step 3. Turn converter POWER switch to On and allow five minute warm-up period.
Step 4. Disconnect cable from AUDIO INPUT connector, J2, at rear of converter cabinet.
Step 5. Adjust converter LEVEL control to 0, and set POLARITY switch to NORMAL.
Step 6. Adjust multimeter to 40 volt dc scale.
Step 7. Connect negative lead from multimeter to converter chassis and positive lead to black test point, TP- 4 (figure 5-2).
Step 8. Adjust VERT CTR control, R31 (figure 2-10), for a zero indication on multimeter. Change multimeter range switch as required to obtain exact setting for R31.
Step 9. Adjust audio oscillator for an output of 3200 cps.
Step 10. Set vtvm range switch to 10 volts and connect to audio oscillator output terminals.
Step 11. Connect audio oscillator output terminals to AUDIO INPUT connector, J2, on rear of converter cabinet or to terminals 1 and 3 of Zl (figure 5-1). Adjust audio oscillator for 6.0 volt indication on vtvm. Leave vtvm connected to audio oscillator.
Step 12. Adjust multimeter to 40 volt dc scale.
Step 13. Adjust converter LEVEL control to 6.
Step 14. Adjust LIN (linearity) control, R39 (figure 5-1), for multimeter indication of +32 volts (at TP- 4).
Step 15. Adjust audio oscillator output to zero, set converter LEVEL control to 0 , and adjust VERT CTR control, R31 (figure 5-1), for zero multimeter indication. Adjust multimeter range switch as
required. Return multimeter range switch to 40 volt dc scale.
Step 16. Set converter LEVEL control to 6 and adjust audio oscillator output to 6.0 volts as measured by vtom.
Step 17. Adjust converter LIN (linearity) control, R39 (figure 5-1), for equal positive and negative voltages on multimeter as converter POLARITY switch is changed from NORMAL to REVERSE.
Step 18. Adjust audio oscillator output to zero, set converter LEVEL control to 0 , and adjust VERT CTR control, R31 (figure \(2-10\) ), for zero multimeter indication.
Step 19. Turn POWER switch to Off and disconnect test equipment from converter. Reconnect cable removed from AUDIO INPUT connector, J2, on rear of converter cabinet.

6-3. REMOVAL, ADJUSTMENT, REPAIR, AND REASSEMBLY.
a. GENERAL. - All electrical components of the converter are installed on two printed circuitboards or the surrounding metal frame. See figures 5-1, 6-3, and 6-4 for locations of component parts.

\section*{CAUTION}

Most of these components are small and a heat sink must be used when soldering or unsoldering them. Be sure all loose solder and bits of wire are removed before power is applied.

\section*{b. ILLUSTRATIONS}
(1) PHOTOGRAPHS. - Figure 5-1 illustrates the physical locations of all parts in the converter that may require replacement during the normal service life of the AN/URA-17. Figure 5-2 illustrates the physical location of all test points in the converter.
(2) WIRING DIAGRAMS. - Figures 6-3 and \(6-4\) are wiring diagrams of the converter.
c. REMOVAL AND REASSEMBLY. - Removal and reassembly instructions are given in the following paragraphs.
(1) CHASSIS REMOVAL. - To remove converter chassis from cabinet, proceed as follows:

Step 1. Loosen four captive screws on front panel, one at each corner.

Step 2. Pull converter chassis forward until drawer slides lock.
Step 3. 1k'move main cable pluy, Pl, from J1 at rear of chassis (figure 5-1), and remive cable from clamp near J 1 .
Step t. I.ift latch on bottom near front of each drawer slide, 4 rasp both sides of converter chassis, and pull forward until chassis is free of cabinet drawer slides. To replace chassis, reverse this procedure.
(2) TRANSFORMER AND FILTFR REPLACEMFNT. - The transformers and filters are bolted to the metal frame around the printed circuit boards (figure 5-1). Remove the securing nuts and washers beneath the frame, tag and unsolder connecting wires, and lift transformer or filter straight upward. Replace by reversing this procedure.
(3) PRINTED CIRCUIT BOARD REPLACE-

MENT. - There are two printed circuit boards (figure 5-1) used in the converter.
Remove either of them as follows:
Step 1. Tag for identification and unsolder leads to terminals on printed circuit board.
Step 2. Remove securing screws holding printed circuit board to metal frame and remove board. To replace printed circuit board, reverse this procedure.
(4) RECE PTACLE PANEL REMOVAL. - To remove receptacle panel at rear of converter (figure 2-6), loosen the captive screw at each corner of receptacle panel and pull panel from cabinet.
d. ADJUSTMENT AND REPAIR.
(1) TEST EQUIPMENT AND SPECIAL TOOLS. Refer to paragraph 6-2c.
(2) TRANSISTOR REPLACEMENT, - All transistors except power transistors A4, ©5, Q20, and Q23 (figure 5-1) are mounted in sockets, with clamps holding them in place. The transistors are easily removed by pulling clamps away from the transistors.

The four power transistors are bolted to metal plates which serve as heat sinks. These metal plates are fastened to the chassis. Collector terminals of power transistors are common to their metal shells and must be insulated from the metal plates. Special anodized aluminum washers are provided for this purpose. When Q4, Q5, Q20, or Q23 is replaced, be sure the proper washer is installed and that mounting bolts are tightened. This is necessary to assure good heat conduction through
the washer. See figures 5-3 and 5-7 for transistor base information. Refer to table 6-1 for adjustjustments required when specific transistors are replaced.

\section*{NOTE}

Pins on replacement transistors fother than Q4, Q5, Q20, and Q23) must be cut to \(13 / 64 \pm 1 / 64\) inch. Do not force transistors into sockets. Bending of pins may crack the seal. Never attempt to solder or otherwise apply heat to transistor pins.
(3) TUNING INDICATOR CATHODE-RAY TUBE RE PLACEMENT. - Replace the tuning indicator crt as follows:

Step 1. Pull chassis forward on drawer slides.
Step 2. Remove socket from tube base.
Step 3. Loosen screws that hold hood and window assembly in front of tube face and remove the assembly.
Step 4. Loosen screw in clamp at tube base.
Step 5. Remove tube and shield. Install new tube in shield (tube socket key way up). Install tube and shield behind chassis opening. Replace tube socket, front hood, and window assembly. Push tube forward against hood assembly and tighten clamp.
Step 6. Perform cathode-ray tube adjustments in parasraph 6-2g.
(4) TRANSISTOR SOCKET REPLACEMENT. Transistor sockets are attached to the printed circuit boards by screws. Remove the \(3 / 32\) inch lock nuts from below socket, unsolder socket terminals from printed circuit board, and lift off socket. To reinstall, position socket and check that socket terminals line up properly with printed circuit leads. Then replace the screws and lock nuts and solder socket terminals to printed circuit leads.

\section*{(5) ROTARY SWITCH REPAIRS.}
(a) REPLACING DEFECTIVE SWITCH WAFER. - Replace defective switch wafer as follows:

Step 1. Remove nuts and washers from rear (chassis side) of switch.
Step 2. Slip defective wafer from switch shaft.

TABLE 6-1. ADJUSTMENTS AFTER TRANSISTOR REPLACEMENTS
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{c} 
TRANSISTOR \\
REPLACED
\end{tabular} & ADJUSTMENTS TO BE MADE & \begin{tabular}{c} 
ADJUSTMENT \\
PARAGRAPH
\end{tabular} \\
\hline \begin{tabular}{l} 
Q2, Q3, Q4 \\
or Q5
\end{tabular} & Mark and space gain adjustments \\
\begin{tabular}{l} 
Q6, Q7, Q8, \\
Q9, or Q10
\end{tabular} & Dc a mplifier adjustments & \(6-2 \underline{h}\) \\
Q19, Q23, or Q24 & -48 volts adjustment & \(6-2 \underline{1}\) \\
Q20, Q21, or Q22 & +48 volts adjustment & \(6-2 \underline{f}(2)\) \\
\hline
\end{tabular}

\section*{NOTE}

SHIFT 8witch (S1A-B) has two switch wafers. If front wafer is defective, remove rear wafer, spacers between wafers, and the defective wafer. Pay -close attention to position of wafers on switch shaft.

3i.ep 3. Place new wafer on switcin shaft. Be sure wafer is correctly positioned.
Step 4. Replace removed hardware \{nuts, lock washers, and spacers) if applicable).
Step 5. Unsolder wires (one at a time) from defective wafer and solder to replacement wafer. Be very careful that wires are correctly placed and mechanically secure before soldering.
(b) RF:PLACING DEFFCTIVE SWITCH. If defect is other than switch wafer, replace entire switch as follows:

Step 1. Loosen set-screw in front panel knob and remove knob.
Step 2. Remove securing nut and lock washer from switch shaft.
Step 3. Tag and identify wires on switch terminals.
Step 4. Unsolder wires from defective switch.
Step 5. Push switch back, through front panel hole.
Step 6. Solder wires to new switch, being sure
wires are correctly placed and mechanically secure before soldering to new switch terminals.
Step 7. Place switch in position, add securing nut, lock washer, and knob.
(6) BANDPASS FILTER TESTS. - Table 6-2 lists characteristics of bandpass filters FL1 and Z1. Resistance information is given in figure 6-2. Perform the following procedures to check characteristics of bandpass filters. Replace any filter not passing applicable tests.
(a) WIDE-SHIFT FILTER FLI.

Step 1. Withdraw chassis to stops on drawer slides, and operate interlock switches (figure 2-10) by pressing in on button at left side of switch block.
Step 2. Connect vtvm's, audio oscillator, and frequency meter to power source and turn power switches on. Allow at least 15 minutes warm-up for frequency meter.
Step 3. Set converter SHIFT switch to WIDE, and turn POWER switch to On position. Allow five minute warm-up pariod.
Step 4. Disconnect cable from AUDIO INPUT connector, J2, at rear of converter cabinet.
Step 5. Connect audio oscillator output terminals to AUDIO INPUT connector, J 2 , or to terminals 1 and 3 of \(Z 1\) (figure 5-1).
tep 6. Set audio oscillator to 2550 cps , measured with frequency meter.

Step 7. Set vtvm range switch to 10 volts and connect between gray test point TP1 (figure 5-2) and converter chassis.
Step 8. Adjust audio oscillator output to obtain vtvm indication of \(\overline{\mathrm{j}} .0\) volts.
Step 9. Set range switch of second vtvm to 10 volts and connect to audio oscillator output terminals.
Step 10. Decrease audio oscillator frequency until vtvm connected to TP- 1
indicates 2. . rolts, kecping audio oscillator output voltage constant. Record audio oscillator frequency. Increatio frequency until vtvm connected to TP-i indicates \(2 . \bar{s}\) volts, keeping audio oscillator output voltage constant. Subtracl lower irequency from higher frequency. Result must be \(2100 \mathrm{cps} \pm 1 \overline{2} 0 \mathrm{cDs}\).
Step 11. Increase audio oscillator frequency until vtym connected to Tr- 1 indicates

TABLE 6-2. FILTER CHARACTERISTICS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline SYMBOL & NAME & inPUT TERMINATION (OHMS) & OUTPUT
TERMINATION
(OHMS) & \[
\begin{array}{|l}
\text { REQUIRED } \\
\text { FREQUENCY } \\
\text { RESPONSE }
\end{array}
\] & ATTENITATION & INSERTION
LOSS & TEST LEVEL \\
\hline 21
(figure
\(5-1\) ) & \begin{tabular}{l}
Narrow \\
shift \\
bandpass \\
l'liter.
\end{tabular} & \[
\begin{aligned}
& 8000 \pm 5 \% \text { at } \\
& 1000 \mathrm{cps} .
\end{aligned}
\] & \[
\begin{aligned}
& 8000 \pm 5 \% \text { at } \\
& 1000 \text { cps. }
\end{aligned}
\] & \[
\begin{gathered}
900 \text { to } \\
1100 \text { cps. }
\end{gathered}
\] & 6 db bandwidth: 500 ะ 50 cps . 40 db bandwidth:
\[
1400 \pm 100 \mathrm{cps} .
\] & \begin{tabular}{l}
3 db max. \\
at \(1000=28\).
\end{tabular} & \[
\begin{array}{|l}
10 \mathrm{v} \text { rms. } \\
\text { (no dc) }
\end{array}
\] \\
\hline \[
\begin{gathered}
\text { FL1 } \\
\text { (figure } \\
5-1 \text { ) }
\end{gathered}
\] & Wideshift bandpass filter. & \[
\begin{aligned}
& 8000 \pm 5 \% \text { a! } \\
& 2550 \text { cps. }
\end{aligned}
\] & \(8000 \pm 5 \%\) at 2550 cps. & \[
\begin{array}{|c}
2050 \text { to } \\
3050 \mathrm{cps} .
\end{array}
\] & 6 db bandwidth: \(2100 \pm 150 \mathrm{cps}\). 40 db bandwidth: 3100 \(\pm 200 \mathrm{cps}\). & \begin{tabular}{l}
3 db max. \\
at 2550 \\
cps.
\end{tabular} & 10 vmm , (no dc) \\
\hline FL4
(figure
\(5-1\) ) & \begin{tabular}{l}
Lowpass keying filter. \\
Section A: (terminals 1,2,3.)
\end{tabular} & \(20 \mathrm{~K}+20 \%\) at 5 cps. & \(20 \mathrm{~K} \pm 20 \%\) at 5 cps. & 0 to 45 cps . & \begin{tabular}{l}
2 db at 15 сря. \\
3.5 db at 45 cps. \\
18 db (min) at 140 cps. \\
\(50 \mathrm{db}(\mathrm{min})\) at 560 cps. \(65 \mathrm{db}(\mathrm{min})\) from 1500 cps too 8000 cps.
\end{tabular} & - - & lovrms. (an) in \(^{2}\) \\
\hline & Section B: (terminals \(4,5,6\).) & \(20 \mathrm{~K} \pm 20 \%\) at 5 cps. & \(20 \mathrm{~K} \pm 20 \%\) at 5 cps. & 0 to 175 cps . & \begin{tabular}{l}
2 db at 15 cps. \\
3.5 db at 175 cps. \\
\(18 \mathrm{db}(\mathrm{min})\) at 560 cps. 50 db (mic) at 2240 cps . \(65 \mathrm{db}(\mathrm{min})\) from 400 ) cps to 80 CO cps.
\end{tabular} & - - & 100 rms , \\
\hline
\end{tabular}
0.05 volts, keeping audio oscillator outpiat voltage constant. Record audio oscillator frequency. Decrease frequency until itum cornected to TP- to 1 indicates 0.05 volt, keeping audio oscillator output voltage constant. Subtract lower frequency from higher frequency. Result must be 3100 cps \(\pm 200 \mathrm{cps}\).
Step 12. Turn POWER switch to Off and disconnect vtvm and audio oscillator from converter. Reconnect cable to AUDIO INPUT connector, J2, on rear of converter cabinet.
(b) NARROW-SHIFT FILTER (PART OF Z1).

Step 1. Withdraw chassis to stops on drawer slides, and operate interlock switches (figure 2-10) by pressing in on button at left side of switch block.
Step 2. Connect vtvm's, audio oscillator, and frequency meter to power source and turn power switches on. Allow at least 15 minutes warm-up for frequency meter.
Step 3. Set converter SHIFT switch to NARROW, and turn POWER switch to On position. Allow five minute warm-up pariod.
Step 4. Remove cable attached to AUDIO INPUT connector, J2, at rear of converter cabinet.

Step 5. Connect audio oscillator output terminals to AUDIO INPUT connector, J2, or to terminals 1 and 3 of 21 (figure 5-1).
Step 6. Set audio oscillator to 1000 cps , using frequency meter.
Step 7. Sot vtvm ra:nge switch to 10 volts and connect between gray test point, TP1 (figure 5-2) and converter chassis.
Step 8. Adjust audio oscillator output to obtain vtvm indication of 5.0 volts.
Step 9. Set range switch of second vtvm to 10 volts and connect to audio oscillator output terminals. Record vtvm indication.
Step 10. Decrease audio oscillator frequency until vtvm connected to TP- 1 indicates 2.5 volts, keeping audio oscillator output voltage constant. Record audio oscillator frequency. Increase audio oscillator frequency until vtvm connected to TP- 1 indicates 2.5 volts, keeping audio oscillator output voltage constant. Subtract lower frequency from higher frequency. Result must be \(500 \mathrm{cps} \pm 50\) cps.
Step 11. Increase audio oscillator frequency untll vtvm connected to TP- 1 indicates
0.05 volt, keeping audio osclllator output voltage constant. Record audio oscillator frequency. Decrease audio oscillator frequency until vtvm connected to TP1 indicates 0.05 volt, keeping audio oscillator output voltage constant. Subtract lower frequency from higher frequency. Result must be \(1400 \mathrm{cps} \pm 100\) cps.
Step 12. Turn POWER switch to Off and disconnect vtvm and audio oscillator from converter. Reconnect cable to AUDIO INPUT connector, \(\sqrt{ } 2\), at rear of converter cabinet.
(7) DISCRIMINATOR TESTS. - Discriminator frequency response characteristics are given in the curves of figure 6-1. These are in terms of frequency versus output voltage. Resistance information is given in figure 6-2. Perform the following procedures to check the discriminator characteristics. Replace any discriminator not passing applicable tests.

\section*{(a) WIDE-SHIFT DISCRIMINATOR.}

Step 1. Withdraw chassis to stops on drawer slides, and operate interlock switches (figure 2-10) by pressing in on button at left side of switch block.
Step 2. Cọnnect vtvm, audio oscillator, and frequency meter to power source and turn power switches on. Allow at least 15 minutes warm-up for frequency meter.
Step 3. Set converter SHIFT switch to WIDE, and SPEED switch to SLOW. Turn POWER switch to On position. Allow five minute warm-up period.
Step 4. Remove cable attached to AUDIO INPUT connector, J2, at rear of converter cabinet.
Step 5. Connect audio oscillator output terminals to AUDIO INPUT connector, J2, or to terminals 1 and 3 of \(Z 1\) (figure 5-1).
Step 6. Set audio oscillator to 3 kc , using frequency meter.
Step 7. Set vtvm range switch to 10 volts and connect to audio oscillator output terminals. Adjust audio oscillator to obtain vtvm indication of 6.0 volts.
Step 8. Adjust multimeter to measure 15 volts dc. Connect positive lead of multimeter to black test point, TP- 4 (figure \(5-2\) ). Connect negative lead of multimeter to converter chassis.
Step 9. Adjust converter LEVEL control to obtain multimeter indication of 15 volts.
Step 10. Adjust audio oscillator to 1500 cps , using


Figure 6-1. Discriminator Frequency Response Curves


Figure 6-2. Filter and Transformer Resisfance Data
frequency meter, keeping output voltage at 6.0 volts. Reverse multimeter leads. Record multimeter indication.
Step 11. Increase audio oscillator frequency in 50 cps steps to 3700 cps . Record multimeter voltage indication at each frezuency.
Step 12. Plot these points on a graph. Connect points with a smooth curve.
Step 13. Draw a straight line between 2200 and 2300 cps points. Frequency deviation from curve shall not be greater than 35 cps. Crossover point shall be between 2500 and 2600 cps. Peaks shall be \(1700 \pm 100 \mathrm{cps}\) and \(3400 \pm 150 \mathrm{cps}\).
Step 14. Turn POWER awitch to Off and disconnect vtvm, multimeter, and audio oscillator from converter. Reconnect cable to AUDIO INPUT consector, J2, at rear of converter cabinet.
(b) NARROW-SHIFT DISCRIMINATOR.

Step 1. Withdraw chassis to stops on drawer slides, and operate interlock switches (figure 2-10) by pressing in on button at left side of switch block.
Step 2. Connect vtvm, audio oscillator, and frequency meter to power source and turn power awitches on. Allow at least 15 minutes warm-up for frequency meter.
Step 3. Set converter SHIFT awitch to NARROW and turn POWER awitch to On position. Allow five minute warm-up period.
Step 4. Remove cable connected to AUDIO INPUT connector, J2, at rear of converter cabinet.
Step 5. Connect audio oscillator output terminals to AUDIO INPUT connector, J2, or to terminals 1 and 3 of Z 1 (figure 5-1).
Step 6. Set audio oscillator to 1200 cps , using frequency meter.
Step 7. Set vtvm range switch to 10 volts and comnect to audio oscillator output terminals. Adjust audio oscillator to obtain vtvin indication of 6.0 volts.
Step 8. Adjust multimeter to measure 15 volts dc. Connect positive lead of multimeter to black teat point, TP- 4 (figure \(5-2\) ). Connect negative lead of multimeter to converter chassis.
Step 9. Adjust converter LEVEL control to obtain multimeter indication of 15 volts.
Step 10. Adjust audio oscillator to 500 cps , keeping output voltage at 6.0 volts. Reverse multímeter leads. Record multimeter indication.
Step 11. Increase audio oscillator frequency in 100 cps steps to 700 cps and in 20 cps stepe from 700 cps to 1500 cps . Record
multimeter voltage indication at each frequency.
Step 12. Plot these points on a graph. Connect points with a smooth curve.
Step 13. Draw a straight line between 900 and 1100 cps points. Frequency deviation from curve shall not be greater than 15 cps. Crossover point shall be between 980 and 1020 cps . Peaks shall be 800 \(\pm 30 \mathrm{cps}\) and \(1200 \pm 40 \mathrm{cps}\).
Step 14. Turn POWER switch to Off and disconnect vtvm, multimeter, and audio oscillator from converter. Reconnect cable to AUDIO INPUT comector, 32 , at rear of converter cabinet.
(8) LOW-PASS KEYNNG FILTER TESTS. Table 6-2 lists characteristics of low-pass keying filter. Resistance information is given in figure 6-2. Perform the following procedures to check characteristics of low-pass keying filter FliA. Replace filter if it falls these tests.

Step 1. Withdraw chassis to stops on drawer slides, and operate interlock switches (figure 2-10) by pressing in on button at left suie of switch block.
Step 2. Connect vtvm's, audio oscillator, and frequency meter to power source and turn power switches on. Allow at least 15 minutes warm-up for frequency meter.
Step 3. Set converter SPEED awitch to SLOW. and turn POWER switch to On position. Allow five minute warm-up period.
Step 4. Connect a \(20 \mathrm{k} \pm 1 \%\) resistor to "hot" terminal of audio oscillator. Connect other end of resistor to terminal 1 of FL4 (figure 5-1). Connect ground terminal of audio oscillator to converter chassis.
Step 5. Adjust audio oscillator frequency to 15 cps, using frequency meter.
Step 6. Connect a \(20 \mathrm{k} \pm 1 \%\) resistor across vtvm terminals.
Step 7. Set vtvm range switch to 10 volts. Connect vtvm between terminal 3 of FL4 and converter chassis using coaxial cable.
Step 8. Adjust audio oscillator ior vtvm indication of 5.0 volts.
Step 9. Set range switch of second vtvm to 10 volts and connect to audio oscillator output terminals (on oscillator side of 20 k resistor). Record vtvm indication.
Step 10. Increase audio oscillator frequency to 45 cps, keeping output voltage constant. Indication of vtvm connected to terminal 3 of FL4 must be 3.15 to 4.0 volts.
Step 11. Increase audio oscillator frequency to 140
cps, keeping output voltage constant. Indication of vtvm connected to terminal 3 of FL4 must not be greater than 0.63 volt.
Step 12. Increase audio oscillator frequency to 560 cps , keeping output voltage constant. Indication of vtvm connected to terminal 3 of FL4 must not be greater than 0.016 volt.
Step 13. Increase audio oscillator frequeney to 8 kc , keeping output voltage constant. Indication of vtvm connected to terminal 3 of FL4 must not be greater than 0.0027 volt at any frequency from 1500 cps to8 kc.
Step 14. Set converter SPEED 8witch to FAST.
Step 15. Adjust audio oscillator frequency to 60 cpa, using frequency meter.
Step 16. Move audio oscillator lead from terminal 1 of FL4 to terminal 4 of FL4.
Step 17. Move vtvm lead from terminal 3 of FL4 to terminal 6 of FL4.
Step 18. Adjust audio oscillator output for 5.0 volt indication on vtvm connected to terminal 6 of FL4.

Step 19. Record audio oscillator output voltage (on oscillator side of 20 k resistor).
Step 20. Increase audio oscillator frequency to 175 cps, keeping output voltage constant. Indication of vtvm connected to terminal 6 of FL4 must be 3.15 to 4.0 volte.
Step 21. Increase audio oscillator frequency to 560 cps , keeping output voltage constant. Indication of vtvm connected to terminal 6 of FL4 must not be greater than 0.63 volt.
Step 22. Increase audio oscillator frequency to 2240 cps , keeping output voltage constant. Indication of vtvm connected to terminal 6 of FL4 must not be greater than 0.016 volt.
Step 23. Increase audio oscillator frequency to 8 kc, keeping output voltage constant. Indication of vtvm connected to terminal 6 of FL4 must not be greater than 0.0027 volt at any frequency from 4 ke to 8 kc .
Step 24. Tum ROWER ewitch to Off and dieconnect audio oscillator and vtvm from co. . verter.


\section*{18 \\ }
mame


\section*{7-1. INT RODUCTION.}

Reference designations have been assigned to identify all maintenance parts of ComparatorConverter Group AN/URA-17, hereinafter referred to as the AN/URA-17. They are used for marking the equipment (adjacent to the part they identify) and are included on drawings, diagrams, and the parts list. The letters of a reference designation indicate the kind of part (generic group), such as resistor, capacitor, transistor, etc. The number differentiates between parts of the same generic group. Sockets associated with a particular plugin device, such as a transistor or fuse, are identified by a reference designation which includes the reference designation of the plug-in device. For example, the socket for fuse Fl is designated XF1.

Stock Number Identification Tables (SNIT) or Allowance Parts List (APS) issued by the Electronics Supply Office include Federal Stock Numbers and Source Maintenance and Recoverability Codes. Therefore, reference shall be made to the appropriate SNIT or APL for this information.

\section*{7-2. MAINTENANCE PARTS LIST.}

Table 7-1 lists all maintenance parts used in the AN/URA-17. Column 1 lists the reference designations of the various parts in alphabetical and numerical order. Column 2 refers to explanatory notes, if any, that appear in paragraph 7-4. Column 3 gives the name and describes the various parts. Complete information is given for all key parts (parts differing from any part previously listed in this table). The name and description are omitted for other parts. However, reference is made to the key part for the data. Column 4 indicates how the part is used and gives its functional location in the equipment. The figure listed shows the physical location of the part.

\section*{7-3. LIST OF MANUFACTURERS.}

Table 7-2 lists manufacturers of parts used in the AN/URA-17.

7-4. NOTES.
Not applicable.

TABLE 7-1. COMPARATOR-CONVERTER GROUP AN/URA-17, MAINTENANCE PARTS LIST
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{gathered}
\text { REF. } \\
\text { DESIG. }
\end{gathered}
\] & \(\infty\)
岛
0
0 & NAME AND DESCRIPTION & LOCATING FUNCTION \\
\hline 1-199 & & CONVERTER, FREQUENCY SHIFT: CV-483/ URA-17, Hoffman part/dwg No. 8020000098 & Two such units constitute one AN/URA-17. \\
\hline CR1 & & SEMICONDUCTOR DEVICE, DIODE: Germanium, Texas Instrument Corp., type 1N538 & Limiter at input to Q1 (Figure 6-3) \\
\hline CR2 & & Same as CR1 & Limiter at input to Q1 (Figure 6-3) \\
\hline
\end{tabular}



TABLE 7-1. COMPARATOR-CONVERTER GROUP AN/URA-17, MAINTENANCE PARTS LIST (Continued)
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{gathered}
\text { REF. } \\
\text { DESIG. }
\end{gathered}
\] & \[
\begin{aligned}
& \sim \\
& 0 \\
& 0 \\
& 0 \\
& \mathbf{z}
\end{aligned}
\] & NAME AND DESCRIPTION & LOCATING FUNCTION \\
\hline CR3 & & Same as CR1 & High frequency (mark) detector (Figure 6-3) \\
\hline CR4 & & Same as CR1 & High frequency (mark) detector (Figure 6-3) \\
\hline CR5 & & Same as CR1 & Low frequency (space) detector (Figure 6-3) \\
\hline CR6 & & Same as CR1 & Low frequency (space) detector (Figure 6-3) \\
\hline CR 7 & & SEMICONDUCTOR DEVICE, DIODE: Zener, Hoffman Semiconductor Div., type 1N3025B & Zener regulator, Q10 emitter (Figure 6-4) \\
\hline CR8 & & Same as CR7 & Zener regulator, Q10 emitter (Figure 6-4) \\
\hline CR9 & & Same as CR1 & \begin{tabular}{l}
Positive signal clamp at axis restorer \\
(Figure 6-4)
\end{tabular} \\
\hline CR10 & & Same as CR1 & \begin{tabular}{l}
Negative signal clamp at axis restorer \\
(Figure 6-4)
\end{tabular} \\
\hline CR11 & & SEMICONDUCTOR DEVICE, DIODE: Silicon, Texas Instrument Corp., type 1N457 & \begin{tabular}{l}
Key pulse rectifier, mark lock-up input \\
(Figure 6-4)
\end{tabular} \\
\hline CR12 & & Same as CR11 & Blas discharge, Q11 base (Figure 6-4) \\
\hline CR13 & & Same as CR11 & \begin{tabular}{l}
Q12 base blas \\
(Figure 6-4)
\end{tabular} \\
\hline CR14 & & Same as CRII & \begin{tabular}{l}
P/O diversity comparator network work \\
(Figure 6-3)
\end{tabular} \\
\hline
\end{tabular}

TABLE 7-1. COMPARATOR-CONVERTER GROUP AN/URA-17, MAINTENANCE PARTS LIST (Continued)
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{gathered}
\text { REF. } \\
\text { DESIG. }
\end{gathered}
\] & a
年
0
8 & NAME AND DESCRIPTION & LOCATING FUNCTION \\
\hline CR15 & & Same as CR11 & \begin{tabular}{l}
P/O diversity comparator network \\
(Figure 6-3)
\end{tabular} \\
\hline CR16 & & Same as CRll & \begin{tabular}{l}
P/O diversity comparator network \\
(Figure 6-3)
\end{tabular} \\
\hline CR17 & & Same as CR11 & \begin{tabular}{l}
P/O diversity comparator network \\
(Figure 6-3)
\end{tabular} \\
\hline CR18 & & Same as CR1 & \begin{tabular}{l}
Isolates +48 vdc and keyer +120 vdc \\
(Figure 6-3)
\end{tabular} \\
\hline CR19 & & Same as CRll & Protects Q17 emitter (Figure 6-3) \\
\hline CR20 & & Same as CR1 & \begin{tabular}{l}
Protects against reversal of +120 vdc keyer supply \\
(Figure 6-3)
\end{tabular} \\
\hline CR21 & & SEMICONDUCTOR DEVICE, DIODE: Zener, Hoffman Semiconductor Div., type 1N3042B & Protects against inductive kickback from keyer relay (Figure 6-3) \\
\hline CR22 & & Same as CR21 & \begin{tabular}{l}
Protects against inductive kickback from keyer relay \\
(Figure 6-3)
\end{tabular} \\
\hline CR23 & & Same as CR1 & -48 vdc supply rectifier (Figure 6-4) \\
\hline CR2A & & Same as CRI & \begin{tabular}{l}
-48 vdc supply rectifier \\
(Figure 6-4)
\end{tabular} \\
\hline CR25 & & Same as CR1 & -48 vdc supply rectifier (Figure 6-4) \\
\hline CR26 & & Same as CRI & -48 vdc supply rectifier (Figure 6-4) \\
\hline CR27 & & SEMICONDUCTOR DEVICE, DIODE: Zener; Hoffman Semiconductor Div., type 1N3029B & Bias stabllizer, Q19 emitter (Figure 6-4) \\
\hline CR28 & & Same as CR1 & +48 vdc supply rectifier (Figure 6-4) \\
\hline
\end{tabular}

TABLE 7-1. COMPARATOR-CONVERTER GROUP AN/URA-17, MADNTENANCE PARTS LIST (Continued)
\begin{tabular}{|c|c|c|c|}
\hline REF. DESIG. &  & NAME AND DESCRIPTION & LOCATING FUNCTION \\
\hline CR29 & & Same as CR1 & +48 vde supply rectifier (Figure 6-4) \\
\hline CR30 & & Same as CR1 & +48 vdc supply rectifler (Figure 6-4) \\
\hline CR31 & & Same as CR1 & +48 vdc supply rectifler (Figure 6-4) \\
\hline CR32 & & SEMICONDUCTOR DEVICE, DIODE: Sillcon, Pacific Semiconductor, Inc., type 1N1731 & -560 vdc supply rectifier (Figure 6-4) \\
\hline CR33 & & Same as CR32 & -560 vdc supply rectifier (Figure 6-4) \\
\hline CR34 & & Same as CR27 & Bias stabllizer, Q22 emitter (Figure 6-4) \\
\hline C1 & & CAPACITOR, FIXED, ELECTROLYTIC: Tantalytic, 6.8 uf, 35 vdc working, Sprague part No. 150D685X0035B2 & Coupling, S1-A to Q1 base (Figure 6-3) \\
\hline C2 & & Same as C1 & \begin{tabular}{l}
Bypass, Q1 emitter \\
(Figure 6-3)
\end{tabular} \\
\hline C3 & & Same as C1 & Deco:apling, Q1 collector (Figure 6-3) \\
\hline C4 & & Same as C1 & Coupling, Q1 collector to S1-B (Figure 6-3) \\
\hline C5 & & Same as C1 & Coupling, S1-B to Q 2 base (Figure 6-3) \\
\hline C6 & & Same as C1 & Coupling S1-B to Q3 base (Figure 6-3) \\
\hline C7 & & Same as C1 & Decoupling, Q2 collector (Figure 6-3) \\
\hline C8 & & Same as C1 & Coupling, Q2 collector to Q4 base (Figure 6-3) \\
\hline C9 & & Same as C1 & Bypass, Q2 emitter (Figure 6-3) \\
\hline
\end{tabular}

TABLE 7-1. COMPARATOR-CONVERTER GROUP AN/URA-17, MAINTENANCE PARTS LIST (Continued)
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{gathered}
\text { REF. } \\
\text { DESIG. }
\end{gathered}
\] & \% & NAME AND DESCRIPTION & LOCATING FUNCTION \\
\hline C10 & & Same as Cl & \begin{tabular}{l}
Bypass, Q3 emitter \\
(Figure 6-3)
\end{tabular} \\
\hline C11 & & Same as Cl & \begin{tabular}{l}
Coupling, Q3 collector to QS base \\
(Figure 6-3)
\end{tabular} \\
\hline C12 & & \begin{tabular}{l}
CAPACITOR, FIXED, ELECTROLYTIC: \\
47 uf, 10 vdc working, Sprague solid tant. cap, \(\pm 10 \%\) insulating sleeve, part No. 150D476X9010R2
\end{tabular} & \begin{tabular}{l}
Bypass, © © emitter \\
(Figure 6-3)
\end{tabular} \\
\hline C13 & & \begin{tabular}{l}
CAPACITOR, FIXED, ELECTROLYTIC: \\
120 uf, 10 vdc working, Sprague solid tant. cap, \(\pm 10 \%\) insulating sleeve, part No. 150D127X9010R2
\end{tabular} & \begin{tabular}{l}
Bypass, QS emitter \\
(Figure 6-3)
\end{tabular} \\
\hline C14 & & \begin{tabular}{l}
CAPACITOR, FDXED, ELECTROLYTIC: \\
20 uf \(-15 \%+50 \%\), 60 vdc working, MIL-C-3965-4 type CL45BK200T Pl
\end{tabular} & Decoupling, Q5 collector (Figure 6-3) \\
\hline C15 & & CAPACITOR, FDXED, PAPER DIELECTRIC: 0.22 uf \(\pm 10 \%, 100\) vdc, MIL-C-25/1 type C P05A1KB224K1 & Decoupling, Q8 collector (Figure 6-4) \\
\hline C16 & & Not used & \\
\hline C17 & & \begin{tabular}{l}
CAPACITOR, FIXED, ELECTROLYTIC: \\
50 uf \(-15 \%+50 \%\), 60 vdc working, MIL-C-3965-4 type CL45BK500TP1
\end{tabular} & \begin{tabular}{l}
P/O axis restorer network \\
(Figure 6-4)
\end{tabular} \\
\hline C18 & & Same as C17 & \begin{tabular}{l}
P/O axis restorer network \\
(Figure 6-4)
\end{tabular} \\
\hline C19 & & Same as C17 & P/O axis restorer network (Figure 6-4) \\
\hline C20 & & Same as C17 & \begin{tabular}{l}
P/O axis restorer network \\
(Figure 6-4)
\end{tabular} \\
\hline C21 & & CAPACITOR, FDKED, PAPER DIELECTRIC: 0.047 uf, \(200 \mathrm{vdc}, \mathrm{MIL}-\mathrm{C}-25 / 1\) type CP05A1KC473K1 & Bypass, Q17 collector (Figure 6-3) \\
\hline C22 & & CAPACITOR, FDXED, ELECTROLYTIC: 25 uf \(-15 \%+50 \%\), 125 vdc, MIL-C-3965-4 type C145BP250TP1 & \begin{tabular}{l}
P/O-48 v power supply \\
filter network \\
(Figure 6-4)
\end{tabular} \\
\hline
\end{tabular}

TABLE 7-1. COMPARATOR-CONVERTER GROUP AN/URA-17, MAINTENANCE PARTS LIST (Continued)
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{gathered}
\text { REF. } \\
\text { DESIG. }
\end{gathered}
\] & \[
\begin{aligned}
& \text { a } \\
& \text { H } \\
& \text { Z }
\end{aligned}
\] & NAME AND DESCRIPTION & LOCATING FUNCTION \\
\hline C23 & & Same as C22 & P/O -48 v power supply filter network (Figure 6-4) \\
\hline C24 & & Same as C22 & P/O-48 \(v\) power supply filter network (Figure 6-4) \\
\hline C25 & & Same as Cl & P/O RC network for Q19 (Figure 6-4) \\
\hline C26 & & Same as C14 & \begin{tabular}{l}
P/O -48 v power supply filter network \\
(Figure 6-4)
\end{tabular} \\
\hline C27A-B & & CAPACITOR, FIXED, PAPER DIELECTRIC: dual section; \(0.1 \mathrm{uf} \pm 20\) 易, 1000 vdc working per section; MIL-C-25/4 type CP54B4EG104V1 & \begin{tabular}{l}
P/O -560 v power supply filter network \\
(Figure 5-1)
\end{tabular} \\
\hline C28 & & Same as C22 & \begin{tabular}{l}
P/O +48 v power supply filter network \\
(Figure 6-4)
\end{tabular} \\
\hline C29 & & Same as C1 & \begin{tabular}{l}
P/O RC network for Q22 \\
(Figure 6-4)
\end{tabular} \\
\hline C30 & & Same as C14 & \(\mathrm{P} / \mathrm{O}+48 \mathrm{v}\) power supply filter network (Figure 6-4) \\
\hline C31A-B & & Same as C27A-B & \begin{tabular}{l}
P/O -560 v power supply filter network \\
(Figure 5-1)
\end{tabular} \\
\hline C32 & & Same as C1 & P/O blasing RC network for Q11 (Figure 6-4) \\
\hline DS1 & & LAMP, GLOW: 0.04 watt, T-3-1/4 bulb; MIL-L-15098B type NE-51 & Power on-off indicator (Figure 5-1) \\
\hline E1 & & TERMINAL STUD: silver plated brass term; 39/64 in. Ig by \(1 / 4 \mathrm{in}\). hex base; No. 6-32 threaded ceramic base; 2,500 RMS breakdown voltage at 60 cps; CTC part No. X2045-F6 & Grounded input center tap (Figure 2-6) \\
\hline
\end{tabular}

TABLE 7-1. COMPARATOR-CONVERTER GROUP AN/URA-17, MAINTENANCE PARTS LIST (Continued)
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{gathered}
\text { REF. } \\
\text { DESIG. }
\end{gathered}
\] & N
年
0
8 & NAME AND DESCRIPTION & LOCATING FUNCTION \\
\hline FL1 & & FILTER, BANDPASS: \(2550 \mathrm{cps} \pm 50 \mathrm{cps}\) operating freq; 8000 ohms \(\pm 5 \%\) input/output impedance at 2550 cps ; four terminals; \(2-1 / 4 \mathrm{in}\). lg by 2-1/4 in. b by 1-3/4 in. w; Hoffman Spec Control dwg 8180000031: Transonic Inc., type TS-5214 & \begin{tabular}{l}
Wideband filter, input to S1-A \\
(Figure 5-1)
\end{tabular} \\
\hline FL2 & & FILTER, BANDPASS: peaked at \(800 \mathrm{cps} \pm 40 \mathrm{cFs}\) and \(1200 \mathrm{cps} \pm 40 \mathrm{cps}\) with crossover at 1000 cps \(\pm 15 \mathrm{cps}\), four terminals, \(2-1 / 4 \mathrm{in} . \mathrm{lg}\) by \(1-3 / 4 \mathrm{in}\). \(h\) by 1-1/2 in. w; Hoffman Spec Control dwg 8180000028; Transonic Inc., type TS-5215 & Narrow-shift discriminator between Q1 and Q2 or Q3 (Figure 5-1) \\
\hline FL3 & & FILTER, BANDPASS: peaked at \(1700 \mathrm{cps} \pm 100\) cps and \(3400 \mathrm{cps} \pm 150 \mathrm{cps}\) with crossover at \(2550 \mathrm{cps} \pm 40 \mathrm{cps}\); four terminals; \(2-1 / 4 \mathrm{in}\). lg by 1-3/4 in. h by 1-1/2 in. \(\mathrm{w}_{\mathrm{i}}\) Hoffman Spec Control dwg 8180000029: Transonic Inc., type TS-5216 & Wide-shift discriminator between Q1 and Q2 or Q3 (Figure 5-1) \\
\hline FL4 & & FILTER, BANDPASS, LOW PASS: section A: 45 cps cutoff frequency; 2 db or less insertion loss at \(15 \mathrm{cps} ; 18 \mathrm{db}\) at \(140 \mathrm{cps} ; 50 \mathrm{db} \mathrm{min}\) at \(560 \mathrm{cps} ;\) 65 db at 1500 cps to \(8 \mathrm{kc} ; 20 \mathrm{k} \pm 20 \%\) input and output Impedance at 5 cps ; Section B: 175 cps cutoff frequency, 2 db or less insertion loss at 15 cps; 18 db at \(560 \mathrm{cps} ; 50 \mathrm{db}\) at \(2240 \mathrm{cps} ; 65 \mathrm{db}\) at 4 kc to 8 kc ; Hoffman Spec Control dwg 8180000030; Transonic Inc., type TS-5223 & Keying filter at input to 06 (Figure 5-1) \\
\hline F1 & & FUSE, CARTRIDGE: silver plated, MS90079-18-1 type FO3GR500B \(5990-280-5038\) & AC line fuse (Figure 5-1) \\
\hline F2 & & Same as F1 \(\quad 5920-280-3811\) & AC line fuse (Figure 5-1) \\
\hline J1 & & CONNECTOR, RECEPTACLE, ELECTRICAL: 15 contacts, gold plated; low loss plastic dielectric; brass body, Iridite finish; Cannon Electric Co. part No. DAM-15P & Distribution jack on CV-483/URA-17 chassis (Figure 5-1) \\
\hline \(J 2\) & & CONNECTOR, RECEPTACLE, ELECTRICAL: three No. 16 female contacts, low loss plastic dielectric insulation; box type aluminum alloy body; cad plate and chromate finish; Cannon Electric Co. part No. MS3102A14S-7S & AUDIO INPUT connector on cable receptacle panel (Figure 2-4) \\
\hline
\end{tabular}

TABLE 7-1. COMPARATOR-CONVERTER GROUP AN/URA-17, MAINTENANCE PARTS LIST (Continued)
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{gathered}
\text { REF. } \\
\text { DESIG. }
\end{gathered}
\] & \[
\begin{aligned}
& \infty \\
& \sqrt[11]{1} \\
& 0 \\
& 0
\end{aligned}
\] & NAME AND DESCRIPTION & LOCATING FUNCTION \\
\hline J3 & & CONNECTOR, RECEPTACLE, ELECTRICAL: three No. 16 male contacts, low loss plastic dielectric insulation; box type aluminum alloy body; cad plate and chromate finish; Cannon Electric Co. part No. MS3102A14S-7P & POWER input connector on cable receptacle panel (Figure 2-4) \\
\hline J4 & & CONNECTOR, RECEPTACLE, ELECTRICAL: MIL-C-3608 type UG-1094/U & \begin{tabular}{l}
DIV. A connector for comparator interconnection \\
(Figure 2-4)
\end{tabular} \\
\hline J5 & & Same as J4 & DIV. B connector for comparator interconnection (Figure 2-4) \\
\hline 56 & & CONNECTOR, RECEPTACLE, ELECTRICAL: two No. 16 male contacts, low loss plastic dielectric; box type aluminum alloy body; cad plate and chromate finish; Cannon Electric Co. part No. MS3102A14S-9P & TTX OUTPUT connector. Loop keyer output to TTY (Figure 2-4) \\
\hline J7 & & Same as J4 & REMOTE TUNING IND. connector to remote tuning indicator (Figure 2-4) \\
\hline P1 & & \begin{tabular}{l}
CONNECTOR, PLUG, FLECTRICAL: \\
15 contacts, gold plated; low loss plastic dielectric; brass bndy, iridite finish; Cannon Electric Co. part No. DAM-15S
\end{tabular} & \begin{tabular}{l}
Connects J1 to external cable receptacle panel \\
(Figure 5-1)
\end{tabular} \\
\hline Q1 & & TRANSISTOR: germanium, PNP; Sylvania Electric Products Inc., type 2NS26 & Audio amplifier (Figure 6-3) \\
\hline Q2 & & Same as Q1 & lst mark amplifier (Figure 6-3) \\
\hline Q3 & & Same as Q1 & \begin{tabular}{l}
1st space amplifier \\
(Figure 6-3)
\end{tabular} \\
\hline 04 & & TRANSISTOR: germanium, PNP; Delco Radio Div., type 2N1412 & \begin{tabular}{l}
2nd mark amplifier \\
(Figure 6-3)
\end{tabular} \\
\hline Q5 & & Same as Q4 & \begin{tabular}{l}
2nd space amplifier \\
(Figure 6-3)
\end{tabular} \\
\hline Q6 & & TRANSISTOR: silicon, NPN; MIL-T-19500/37A type 2N333 & \begin{tabular}{l}
DC amplifier \\
(Figure 6-4)
\end{tabular} \\
\hline
\end{tabular}

TABLE 7-1. COMPARATOR-CONVERTER GROUP AN/URA-17, MANTENANCE PARTS LIST (Continued)
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{gathered}
\text { REF. } \\
\text { DESIG }
\end{gathered}
\] & n
0
0
0 & NAME AND DESCRIPTION & LOCATING FUNCTION \\
\hline Q7 & & Same as Q6 & DC amplifier (Figure 6-4) \\
\hline Q8 & & Same as Q6 & \begin{tabular}{l}
DC amplifier \\
(Figure 6-4)
\end{tabular} \\
\hline Q9 & & Same as Q6 & \begin{tabular}{l}
DC amplifier \\
(Figure 6-4)
\end{tabular} \\
\hline Q10 & & TRANSISTOR: gilicon, NPN; Texas Instrument Corp., type 2N657 & DC amplifier (Figure 6-4) \\
\hline Q11 & & TRANSISTOR: germanium, NPN; General Electric, type 2N336 & Mark lock-up control (Figure 6-4) \\
\hline Q12 & & TRANSISTOR: silicon, NPN: Texas Instrument Corp., type 2N497 & Mark lock-up switching (Figure 6-4) \\
\hline Q13 & & Same as 66 & \begin{tabular}{l}
P/O de limiter \\
(Figure 6-3)
\end{tabular} \\
\hline Q14 & & TRANSISTOR: germanium, PNP: Sylvania Electric Products Inc., type 2N328A & \begin{tabular}{l}
P/O de limiter \\
(Figure 6-3)
\end{tabular} \\
\hline Q15 & & Same as Q14 & \begin{tabular}{l}
\(\mathrm{P} / \mathrm{O}\) dc limiter \\
(Figure 6-3)
\end{tabular} \\
\hline Q16 & & Same as Q6 & \begin{tabular}{l}
\(\mathrm{P} / \mathrm{O}\) dc limiter \\
(Figure 6-3)
\end{tabular} \\
\hline Q17 & & Same as Q10 & \begin{tabular}{l}
P/O loop keyer \\
(Figure 6-3)
\end{tabular} \\
\hline Q18 & & Same asQ10 & P/O loop keyer (Figure 6-3) \\
\hline Q19 & & Same as Q6 & P/O-48 vdc supply regulator (Figure 6-4) \\
\hline Q20 & & TRANSISTOR: silicon, NPN; Texas Instrument Corp., type 2N424 & \begin{tabular}{l}
P/O +48 vdc supply regulator \\
(Figure 6-4)
\end{tabular} \\
\hline Q21 & & Same as Q6 & P/O +48 vdc supply regulator (Figure 6-4) \\
\hline Q22 & & Same as Q6 & P/O +48 vdc supply regulator (Figure 6-4) \\
\hline
\end{tabular}

TABLE 7-1. COMPARATOR-CONVERTER GROUP AN/URA-17. MAINTENANCE PARTS LIST (Continued)
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{gathered}
\text { REF. } \\
\text { DESIG. }
\end{gathered}
\] & \(\infty\)
0
0
0
8 & NAME AND DESCRIPTION & LOCATING FUNCTION \\
\hline Q23 & & Same as Q20 & P/O -48 vdc supply regulator (Figure 6-4) \\
\hline Q24 & & Same as Q12 & P/O -48 vdc supply regulator (Figure 6-4) \\
\hline R1 & & RESISTOR, FIXED, COMPOSITION: 5600 ohms \(\pm 5 \%, 1 / 2 \mathrm{w}\); MIL-R-11, type RC20GF562J; part No. MS35043-105 & \begin{tabular}{l}
Impedance matching \\
(Figure 6-3)
\end{tabular} \\
\hline R2 & & RESISTOR, FIXED, COMPOSITION: \(10 \mathrm{k} \pm 10 \%\), 1/2 w; MIL-R-11 type RC20GF103K; part No. MS35043-19 & Base blas, Q1 (Figure 6-3) \\
\hline R3 & & RESISTOR, FIXED, COMPOSITION: \(47 \mathrm{k} \pm 10 \%\), 1/2 w; MIL-R-11, type RC20GF473K; part No. MS35043-23 & Base bias, 01 (Figure 6-3) \\
\hline R4 & & \begin{tabular}{l}
RESISTOR, VARIABLE, COMPOSITION: \(10 \mathrm{k}, \pm 10 \%\) \\
2 w; single section; MIL-R-94/5 type \\
RV4NA YSD103C
\end{tabular} & LEVEL control, variable collector load, Q1 (Figure 6-3) \\
\hline R5 & & RESISTOR, FIKED, COMPOSITION: 680 ohms \(\pm 10 \%, 1 / 2 \mathrm{w}\); MIL-R-11, type RC20GF681K; part No. MS35043-12 & Decoupling - 26 v (Figure 6-3) \\
\hline R6 & & RESISTOR, FIXED, COMPOSITION: 120 ohms \(\pm 10 \%, 1 / 2 \mathrm{w}\); MIL-R-11, type RC20GF121K; part No. MS35043-198 & Degeneration, Q1 emitter (Figure 6-3) \\
\hline R7 & & RESISTOR, FIKED, COMPOSITION: \(3.9 \mathrm{k} \pm 10 \%\), 1/2 w; MIL-R-11, type RC20GF392K; part No. MS35043-207 & \begin{tabular}{l}
Emitter bias, Q1 \\
(Figure 6-3)
\end{tabular} \\
\hline R8 & & RESISTOR, FIXED, COMPOSITION: \(18 \mathrm{k} \pm 10 \%\), 1/2 w; MIL-R-11, type RC20GF183K; part No. MS35043-21 & \begin{tabular}{l}
Impedance matching \\
(Figure 6-3)
\end{tabular} \\
\hline R9 & & Same as R 8 & \begin{tabular}{l}
Impedance matching \\
(Figure 6-3)
\end{tabular} \\
\hline R10 & & Same as R 8 & Impedance matching (Figure 6-3) \\
\hline
\end{tabular}

TABLE 7-1. COMPARATOR-CONVERTER GROUP AN/URA-17, MAINTENANCE PARTS LIST (Continued)
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{gathered}
\text { REF. } \\
\text { DESIG. }
\end{gathered}
\] & \[
\begin{aligned}
& \text { 先 } \\
& \text { O } \\
& \text { R }
\end{aligned}
\] & NAME AND DESCRIPTION & LOCATING FUNCTION \\
\hline R11 & & RESISTOR, FIXED, COMPOSITION: \(22 k \pm 10 \%\), 1/2 w; MIL-R-11, type RC20G F223K; part No. MS35093-21 & \begin{tabular}{l}
Base bias, Q 2 \\
(Figure 6-3)
\end{tabular} \\
\hline R12 & & RESISTOR, FIXED, COMPOSITION: \(6.8 \mathrm{k} \pm 10 \%\), 1/2 w; MIL-R-11, type RC20GF682K; part No. MS35034-18 & \begin{tabular}{l}
Base blas, Q2 \\
(Figure 6-3)
\end{tabular} \\
\hline R13 & & Same as R12 & \begin{tabular}{l}
Base blas, Q3 \\
(Figure 6-3)
\end{tabular} \\
\hline R14 & & Same as R11 & \begin{tabular}{l}
Base blas, Q3 \\
(Figure 6-3)
\end{tabular} \\
\hline R15 & & RESISTOR, FEXED, COMPOSITION: \(1.5 \mathrm{k} \pm 10 \%\), 1/2 w; MLL-R-11 type RC20GF152K; part No. MS35043-14 & Decoupling, -26 v line (Figure 6-3) \\
\hline R16 & & Same as R15 & Collector load, Q2 (Figure 6-3) \\
\hline R17 & & RESISTOR, VARIABLE, COMPOSITION: 2500 ohms; MIL-R-94A type RV6LAYSA252A & \begin{tabular}{l}
SPACE GADN control, Q3 emitter \\
(Figure 5-1)
\end{tabular} \\
\hline R18 & & Same as R15 & Collector load, Q3 (Figtre 6-3) \\
\hline R19 & & RESISTOR, FIXED, COMPOSITION: 470 ohms \(\pm 10 \%, 1 / 2\) w; MLL-R-11 type RC20G F471K; part No. MS35043-11 & Base bias, Q4 (Figure 6-3) \\
\hline R20 & & RESISTOR, FIXED, COMPOSITION: \(1.8 \mathrm{k} \pm 10 \%\), 1 w; MIL-R-11 type RC36G182K; part No. MS35044-225 & Degenerative feedback, Q4 (Figure 6-3) \\
\hline R21 & & Same as R19 & \begin{tabular}{l}
Base bias, Q5 \\
(Figure 6-3)
\end{tabular} \\
\hline R22 & & Same as R20 & Degenerat.ive feedback, Q5 (Figure 6-3) \\
\hline R23 & & RF:SISTOR, FIXED, COMPOSITION: 120 ohms \(\pm 10 \%\), 1 w; MIL-R-11 type RC32GF121K; part No. MS35044-218 & \begin{tabular}{l}
Emitter blas, Q4 \\
(Figure 6-3)
\end{tabular} \\
\hline R24 & & Same as R23 & Emitter bias, Q5 (Figure 6-3) \\
\hline
\end{tabular}

TABLE 7-1. COMPARATOR-CONVERTER GROUP AN/URA-17, MAINTENANCE PARTS LIST (Continued)
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{gathered}
\text { REF. } \\
\text { DF:SIG }
\end{gathered}
\] &  & NAME AND DESCRIPTION & LOCATING FUNCTION \\
\hline R25 & & RESISTOR, FEXED, COMPOSITION: \(12 \mathrm{k} \pm 10 \%\), 1/2 w; MIL-R-11 type RC20GF123K; part No. MS35043-210 & Mark signal summing resistor (Figure 6-3) \\
\hline R26 & & Same as R25 & Space signal summing resistor (Figure 6-3) \\
\hline R27 & & RESISTOR, FIXED, COMPOSITION: 150 ohms \(\pm 10 \%, 2\) w; MIL-R-11 type RC42GF151K; part No. MS35045-8 & Voltage dropping resistor (Figure 6-3) \\
\hline R28 & & Same as R27 & Voltage dropping resistor (Figure 6-3) \\
\hline R29 & & RESISTOR, FIXED, COMPOSITION: \(27 \mathrm{k} \pm 10 \%\), 1/2 w; MIL-R-11 type RC20GF273K; part No. MS35043-212 & Base biasing, Q6 (Figure 6-4) \\
\hline R30 & & RESISTOR, FEXED, COMPOSITION: \(15 \mathrm{k}, \pm 10 \%\), 1/2 w; M1L-R-11 type RC20GF153K; part No. MS35043-20 & Emitter bias, Q6 and Q9 (Figure 6-4) \\
\hline R31 & & RESISTOR, VARIABLE, COMPOSITION: lk; MIL-R-11 type RV6LAYSA102A & VERT CTR control, variable emitter bias for Q6 and Q9 (Figure 5-1) \\
\hline R32 & & Same as RlI & Collector Ioad, Q6 (Figure 6-4) \\
\hline R33 & & RESISTOR, FEXED, COMPOSITION: \(8.2 \mathrm{k} \pm 10 \%\), \(1 / 2\) w; MIL-R-11 type RC20GF822K; part No. MS35043-209 & Collector load, Q7 (Figure 6-4) \\
\hline R34 & & Same as R33 & Collector load, Q8 (Figure 6-4) \\
\hline R35 & & Same as R30 & Emitter bias, Q7 and Q8 (Figure 6-4) \\
\hline R36 & & Same as R11 & Collector load, Q9 (Figure 6-4) \\
\hline R37 & & Same as R25 & \begin{tabular}{l}
Base bias, Q9 \\
(Figure 6-4)
\end{tabular} \\
\hline R38 & & RESISTOR, FIXED, COMPOSITION: \(33 \mathrm{k} \pm 10 \%\), 1/2 w; MIL-R-11 type RC20GF333K; part No. MS35043-22 & \begin{tabular}{l}
Base bias, Q10 \\
(Figure 6-4)
\end{tabular} \\
\hline
\end{tabular}

TABLE 7-1. COMPARATOR-CONVERTER GROUP AN/URA-17. MAINTENANCE sARTS LIST (Continued)
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{gathered}
\text { REF. } \\
\text { DESIG. }
\end{gathered}
\] & \[
\begin{aligned}
& \infty \\
& \text { M } \\
& \stackrel{1}{1} \\
& \mathbf{z}
\end{aligned}
\] & NAME AND DESCRIPTION & LOCATING FUNCTION \\
\hline R39 & & RESISTOR, VARIABLE, COMPOSITION: 10 k ; MIL-R-94 type RV6LAYSA103A & \begin{tabular}{l}
LIN control, variable; base blas, Q10 \\
(Figure 5-1)
\end{tabular} \\
\hline R40 & & Same as R33 & \begin{tabular}{l}
Base bias, Q10 \\
(Figure 6-4)
\end{tabular} \\
\hline R41 & & RESISTOR, FIXED, COMPOSITION: \(150 \mathrm{k} \pm 10 \%\), 1/2 w; MIL-R-11 type RC20GF154K; part No. MS35043-26 & \begin{tabular}{l}
Degenerative feedback, Q10 to Q9 \\
(Figure 6-4)
\end{tabular} \\
\hline R42 & & RESISTOR, FIXED, COMPOSITION: \(4.7 \mathrm{k} \pm 10 \%\), 1w; MIL-R-11 type RC32GF472K; part No. MS35044-17 & Collector load, Q10 (Figure 6-4) \\
\hline R43 & & RESISTOR, FIXED, COMPOSITION: 560 ohms \(\pm 10 \%, 1\) w; MIL-R-11 type RC32GF561K; part No. MS35044-222 & \begin{tabular}{l}
Emitter blas, Q10 \\
(Figure 6-4)
\end{tabular} \\
\hline R44 & & RESISTOR, FLXED, COMPOSITION: \(2.2 \mathrm{k} \neq 10 \%\), 1/2 w; MIL-R-11 type RC20GF222K; part No. MS3 5043-15 & \begin{tabular}{l}
Isolates TP-4 from axis restorer \\
(Figure 6-4)
\end{tabular} \\
\hline R45 & & Same as RII & \begin{tabular}{l}
Axis restorer combining resistor \\
(Figure 6-4)
\end{tabular} \\
\hline R46 & & Same as R11 & \begin{tabular}{l}
Axls restorer combining resistor \\
(Figure 6-4)
\end{tabular} \\
\hline R47 & & RESISTOR, FICED, COMPOSITION: \(1 \mathrm{meg} \pm 10 \%\), 1/2 w; MIL-R-11 type RC20GF105K; part No. MS35043-220 & Voltage dropping resistor (Figure 6-4) \\
\hline R48 & & RESISTOR, FEXED, COMPOSITION: 100k \(\pm 10 \%\), 1/2 w; MIL-R-11 type RC20GF104K; part No. MS35043-25 & \begin{tabular}{l}
P/O biasing RC network for Q11 \\
(Figure 6-4)
\end{tabular} \\
\hline R49 \({ }^{\text {- }}\) & & Same as R2 & Collector load, Q11 (Figure 6-4) \\
\hline R50 & & Same as R2 & Coupling resistur, Q11 collector to Q12 base (Figure 6-4) \\
\hline R51 & & Same as R38 & \begin{tabular}{l}
Base blas, Q12 \\
(Figure 6-4)
\end{tabular} \\
\hline
\end{tabular}

TABLE 7-1. COMPARATOR-CONVERTER GROUP AN/URA-17, MAINTENANCE PARTS LIST (Continued)
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{gathered}
\text { REF. } \\
\text { DESIG. }
\end{gathered}
\] & \begin{tabular}{l} 
台 \\
\(\stackrel{1}{4}\) \\
0 \\
\multicolumn{1}{c}{}
\end{tabular} & NAME AND DESCRIPTION & LOCATING FUNCTION \\
\hline R52 & & Same as R33 & Collector load, Q12 (Figure 6-4) \\
\hline R53 & & RESISTOR, FLXED COMPOSITION: \(120 \mathrm{k} \pm 10 \%\), 1/2 w; MIL-R-11 type RC20GF124K; part No. MS35043-216 & Voltage dropping resistor (Figure 6-4) \\
\hline R54 & & Same as R38 & Comparison resistor (Figure 6-4) \\
\hline R55 & & Same as R38 & Comparison resistor (Figure 6-3) \\
\hline R56 & & RESISTOR, FIXED, COMPOSITION: 2.2 meg \(\pm 10 \%, 1 / 2 w_{i}\) MIL \(-R-11\) type RC20GF225K; part No. MS35043-33 & Base blas, Q13 and Q15 (Figure 6-3) \\
\hline R57 & & Same as R56 & Base blas Q13 and Q15 (Figure 6-3) \\
\hline R58 & & Same as R11 & Coupling, comparator to Q13 and Q15 base (Figure 6-3) \\
\hline R59 & & RESISTOR, FDXED, COMPOSITION: \(2.2 \mathrm{k} \pm 10 \%\), 2 w; MIL-R-11 type RC42GF222K; part No. MS35045-15 & Voltage dropping resistor (Figure 6-3) \\
\hline R60 & & RESISTOR, FIXED, COMPOSITION: 220 ohms \(\pm 10 \%, 1 / 2\) w; MIL-R-11 type RC20GF221K; part No. MS35043-9 & \begin{tabular}{l}
Emitter blas, Q16 \\
(Figure 6-3)
\end{tabular} \\
\hline R61 & & Same as R60 & \begin{tabular}{l}
Emitter blas, Q14 \\
(Figure 6-3)
\end{tabular} \\
\hline R62 & & Same as R 59 & \begin{tabular}{l}
Emitter bias, Q14 \\
(Figure 6-3)
\end{tabular} \\
\hline R63 & & RESISTOR, FIXED, COMPOSITION: 680 ohims \(\pm 10 \%, 1 / 2 \mathrm{w}\); MIL-R-11 type RC20GF681K; part No. MS35043-12 & Stabilizes dc limiter by feedback to Q13, Q15 emitters (Figure 6-3) \\
\hline R64 & & Same as R15 & Collector load, Q14 and Q16 (Figure 6-3) \\
\hline R65 & & RESISTOR, FIXED, COMPOSITION: \(1 \mathrm{k} \pm 10 \%\), 1/2 w; MIL-R-11 type RC20GF102K; part No. MS35043-13 & Base bias, Q18 (Figure 6-3) \\
\hline
\end{tabular}

TABLE 7-1. COMPARATOR-CONVERTER GROUP AN/URA-17, MAINTENANCE PARTS LIST (Continued)
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{gathered}
\text { REF. } \\
\text { DFSIG. }
\end{gathered}
\] &  & NAME AND DESCRIPTION & LOCATING FUNCTION \\
\hline R66 & & Same as R25 & \begin{tabular}{l}
Base bias, Q17 \\
(Figure 6-3)
\end{tabular} \\
\hline R67 & & Same as R27 & Current limiting (Figure 6-3) \\
\hline R68 & & RESISTOR, FIXED, COMPOSITION: \(5.6 \mathrm{k} \pm 10 \%\), 1/2 w; MLL-R-11 type RC20GF562K; part No. MS35043-208 & \begin{tabular}{l}
P/O RC network for Q19 \\
(Figure 6-4)
\end{tabular} \\
\hline R69 & & RESISTOR, FIXED, COMPOSITION: \(3.3 \mathrm{k} \pm 10 \%\), 1/2 w; MIL-R-11 type RC20GF332K; part No. MS35043-16 & \begin{tabular}{l}
Establishes current through CR27 \\
(Figure 6-4)
\end{tabular} \\
\hline R70 & & Same as R69 & Collector load, Q19 (Figure 6-4) \\
\hline R71 & & Same as R44 & \begin{tabular}{l}
Base bias, Q19 \\
(Figure 6-4)
\end{tabular} \\
\hline R72 & & Same as R31 & \begin{tabular}{l}
-48 ADJ, variable base bias for Q19 \\
(Figure 6-4)
\end{tabular} \\
\hline R73 & & Same as R69 & \begin{tabular}{l}
Base bias, Q19 \\
(Figure 6-4)
\end{tabular} \\
\hline R74 & & RESISTOR, FIXED, COMPOSITION: \(2.2 \mathrm{k} \pm 10 \%\), 1 w; MlL-R-11 type RC32GF222K; part No. MS35044-15 & P/O voltage divider, -48 vdc to -26 vdc (Figure 6-4) \\
\hline R75 & & RESISTOR, FEXED, COMPOSITION: \(1 \mathrm{k} \pm 10 \%\), 1 w; MIL-R-11 type RC32GF102K; part No. MS35044-13 & P/O voltage divider, -48 vdc to - 26 rdc (Figure 6-4) \\
\hline R76 & & Same as R11 & \begin{tabular}{l}
\(\mathrm{P} / \mathrm{O}\) voltage divider for crt control \\
(Figure 6-3)
\end{tabular} \\
\hline R77 & & RESISTOR, VARIABLE, COMPOSITION: 25k; MIL-R-94/4 type RV6LAYSA253A & HORIZ CENTERING control for crt, \(P_{i}^{\prime}\); ; voltage divider (Figure f-1) \\
\hline R78 & & Same as R11 & \begin{tabular}{l}
\(\mathrm{P} / \mathrm{O}\) voltage divider for crt control \\
(Figure 6-3)
\end{tabular} \\
\hline R79 & & Same as R11 & \begin{tabular}{l}
P/O voltage divider for crt control \\
(Figure 6-3)
\end{tabular} \\
\hline
\end{tabular}

TABLE 7-1. COMPARATOR-CONVERTER GROUP AN/URA-17, MAINTENANCE PARTS LIST (Continued)
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{gathered}
\text { REF. } \\
\text { DESIG. }
\end{gathered}
\] & \[
\begin{aligned}
& \infty \\
& \text { H } \\
& \text { O } \\
& \mathbf{z}
\end{aligned}
\] & NAME AND DESCRIPTION & LOCATING FUNCTION \\
\hline R80 & & Same as R77 & VERT ADJ control for crt, \(\mathrm{P} / \mathrm{O}\) voltage divider (Figure 6-3) \\
\hline R81 & & Same as RIl & P/O voltage divider for crt control (Figure 6-3) \\
\hline R82 & & Same as R56 & Voltage divider, V1 sweep (Figure 6-4) \\
\hline R83 & & Same as R48 & Voltage divider, V1 sweep (Figure 6-4) \\
\hline R84 & & Same as R3 & \begin{tabular}{l}
Current limiting, -560 vdc supply \\
(Figure 6-4)
\end{tabular} \\
\hline R85 & & Same as R68 & \begin{tabular}{l}
P/O RC network for Q22 \\
(Figure 6-4)
\end{tabular} \\
\hline R86 & & Same as R69 & \begin{tabular}{l}
Establishes current through CR34 \\
(Figure 6-4)
\end{tabular} \\
\hline R87 & & Same as R69 & Collector load, Q22 (Figure 6-4) \\
\hline R88 & & Same as R69 & \begin{tabular}{l}
Base blas, Q22 \\
(Figure 6-4)
\end{tabular} \\
\hline R89 & & Same as R31 & \begin{tabular}{l}
+48 ADI; variable control, base blas, Q22 \\
(Figure 5-1)
\end{tabular} \\
\hline R90 & & Same as R69 & \begin{tabular}{l}
Base bias, Q22 \\
(Figure 6-4)
\end{tabular} \\
\hline R91 & & RESISTOR, FIXED, COMPOSITION: \(680 \mathrm{k} \pm 10 \%\), 1/2 w; MIL-R-11 type RC20GF684K; part No. MS35043-30 & \begin{tabular}{l}
P/O voltage divider for crt controls \\
(Figure 6-4)
\end{tabular} \\
\hline R92 & & RESISTOR, VARIABLE, COMPOSITION: 500k; MIL-R-94/4 type RV6LAYSA504A & \begin{tabular}{l}
FOCUS, variable control for V1 \\
(Figure 2-10)
\end{tabular} \\
\hline
\end{tabular}

TABLE 7-1. COMPARATOR-CONVERTER GROUP AN/URA-17, MAINTENANCE PARTS LIST (Continued)
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{gathered}
\text { REF. } \\
\text { DESIG. }
\end{gathered}
\] & ¢
M
O
2 & NAME AND DESCRIPTION & LOCATING FUNCTION \\
\hline R93 & & RESISTOR, VARIABLE, COMPOSITION: 1 meg ; MIL-R-94/4 type RV6LAYSA105A & INT, variable control for V1 (Figure 2-10) \\
\hline R94 & & RESISTOR, FEXED, COMPOSITION: \(820 \mathrm{k} \pm 10 \%\), 1/2 w; MIL-R-11 type RC20G F824K; part No. MS35043-221 & \begin{tabular}{l}
\(\mathrm{P} / \mathrm{O}\) voltage divider for crt controls \\
(Figure 6-4)
\end{tabular} \\
\hline R95 & & Same as R53 & Biasing resistor for V1 cathode (Figure 6-4) \\
\hline R96 & & Same as R17 & \begin{tabular}{l}
MARK GADN, variable control, Q2 emitter \\
(Figure 5-1)
\end{tabular} \\
\hline R97 & & Same as R94 & \begin{tabular}{l}
Base bias for Q6 \\
(Figure 6-4)
\end{tabular} \\
\hline S1A-B & & SWITCH, ROTARY: First section, two position two shorting movable contacts, six fixed contacts; second section, two position three shorting movable contacts, nine fixed contacts; silver plated brass per QQ-B-613; non-sealed shaft per MIL-S-3786; solder type terminals on Mycalex sections; Hoffman Spec Control dwg 8180000033; Oak Mfg. part No. not assigned & SHIFT switch. S1-A selects bandpass filter. S1-B selects discriminator. (Figure 3-1) \\
\hline S2 & & SWITCH, ROTARY: One-section, two-position; \(30^{\circ}\) positioning increments; two shorting moving contacts; sixfixed contacts; silver plated brass per QQ-B-613; non-sealed shaft per MIL-S-3786; solder type terminals on Mycalex sections; Hoffman Spec Control dwg 81800000032; Oak Mfg. part No. not assigned & \begin{tabular}{l}
POLARITY switch. Changes polarity of signal to keying filter. \\
(Figure 3-1)
\end{tabular} \\
\hline S3 & & SWITCH, ROTARY: One-section, two-position; \(30^{\circ}\) positioning increments; two shorting moving contacts; six fixed contacts, silver plated brass per QQ-B-613; non-sealed shaft per MIL-S-3786; solder type terminals on Mycalex sections; Hoffman Spec Control dwg 8180000035; Oak Mfg. part No. not assigned & \begin{tabular}{l}
SPEED switch. Selects keying filter section. \\
(Figure 3-1)
\end{tabular} \\
\hline S4 & & SWITCH, ROTARY: One-section, three-position \(30^{\circ}\) positioning increments; two shorting moving contacts; ten fixed contacts, silver plated brass per QQ-B-613; non-sealed shaft per MIL-S-3786; solder type terminals on Mycalex sections; Hoffman Spec Control dwg 8180000034; Oak Mfg. part No. not assigned & FUNCTIS switch. Selects input to comparator (Figure 3-1) \\
\hline
\end{tabular}

\section*{ORIGINAL}

TABLE 7-1. COMPARATOR-CONVERTER GROUP AN/URA-17, MAINTENANCE PARTS LIST (Continued)
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{gathered}
\text { REF. } \\
\text { DESIG. }
\end{gathered}
\] & \[
\begin{aligned}
& \text { n } \\
& \text { 年 } \\
& 0 \\
& \mathbf{Z}
\end{aligned}
\] & NAME AND DESCRIPTION & LOCATING FUNCTION \\
\hline S5A-B & & SWITCH, SENSTITIVE: Single pole, double throw; 5 amp rating at \(125 / 250\) vac; plastic body; 0.030 in. contact pre-travel; 0.034 in . contactovertravel \({ }_{\text {i }}\) three solder type terminals; Hoffman dwg 2039900004; composed of two microswitches; Unimax part No. T-483 & Cabinet interlock switches (Figure 2-10) \\
\hline S6 & & SWITCH, TOGGLE: double pole, single throw; type MS25100-22 style SГ22K & POWER switch (Figure 3-1) \\
\hline TB1 & & TERMINAL BOARD: Epoxy glass lamin. 3/32' thick per MIL-C-18177, type GEE: Hoffman dwg No. 8100000344; Electro Board Corp., type No. TCB-620-1A & \begin{tabular}{l}
Provides support for component parts \\
(Figure 5-1)
\end{tabular} \\
\hline TB2 & & TERMINAL BOARD: Epoxy glass lamin. 3/32' thick per MIL-C-18177, type GEE: Hoffman dwg No. 8100000345; Electro Board Corp., type No. TCB-620-2A & Provides support for component parts (Figure 5-1) \\
\hline T1 & & TRANSFORMER, DISCRIMINATOR: 600 cps to 3600 cps frequency range; shield between pri and sec grounded to case; 2-1/4 in. lg. 2-1/16 in.•w, 1-3/4 in. h ; Hoffman Spec Control dwg 8180000024; Transonic Inc., type TS-2711 & \begin{tabular}{l}
Coupling from second mark amplifier \\
(Figure 5-1)
\end{tabular} \\
\hline T2 & & Same as T1 & \begin{tabular}{l}
Coupling from second space amplifier \\
(Figure 5-1)
\end{tabular} \\
\hline T3 & & TRANSFORMER, POWER, STEP-DOWN: Terminals 1 and 2, 1 and 3,1 and 4 for input voltages of \(105 \mathrm{vac}, 115 \mathrm{vac}\) and 125 vac at 47.5 cps to \(420 \mathrm{cps} ; 0.2 \mathrm{amp}\) primary; \(59 \mathrm{vrms} \pm 3 \%\) secondary at \(0.25 \mathrm{amp}, 2-3 / 4 \mathrm{in} . \mathrm{lg}, 2-1 / 4 \mathrm{in} . \mathrm{w}\), 1-3/4 in. h case; six solder stud terminals; four No. \(6-32\) by \(9 / 32 \mathrm{in}\). mtg studs; internal shield between pri and sec grounded to case; Hoffman Spec Control dwg 8180000025; Transonic Inc., type TS-2772 & \begin{tabular}{l}
Provides power for -48 vdc supply \\
(Figure 5-1)
\end{tabular} \\
\hline T4 & & TRANSFORMER, POWER, STEP-UP, STE P~DOWN: Input terminals 1 and 2, 1 and 3, 1 and 4 for 105 vac, 115 vac and 125 vac input voltages; 47.5 cps to 420 cps ; output terminals 5 and 6 for \(59 \mathrm{vrms} \pm 3\) 無 and 85 ma ; terminals 7 and 8 for \(550 \mathrm{vac} \pm 3 \%\) and 0.8 ma ; terminals 8 and 9 for \(6.3 \mathrm{vac} \pm 3 \%\) and \(0.6 \mathrm{amp} ; 2-3 / 4 \mathrm{in} . \lg , 2-1 / 4\) in . \(\mathrm{w}, 1-3 / 4 \mathrm{in}\). h case with four \(6-32\) by \(9 / 32 \mathrm{in}\). & Supplies voltage for +48 vdc and -560 vdc supplies (Figure 5-1) \\
\hline
\end{tabular}

TABLE 7-1. COMPARATOR-CONVERTER GROUP AN/URA-17, MAINTENANCE PARTS LIST (Continued)
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{gathered}
\text { REF. } \\
\text { DF:SIG. }
\end{gathered}
\] & c
M
H
0 & NAME AND DESCRIPTION & LOCATING FUNCTION \\
\hline \[
\begin{gathered}
\text { T4 } \\
\text { (Cont'd) }
\end{gathered}
\] & & mtg studs; ten solder stud terminals; internal shield between pri and sec grounded to case; Hoffman Spec Control dwg 8180000026; Transonic Inc., type TS-2712 & \\
\hline V1 & & ELECTRON TUBE: Cathode ray; RCA type 2BP1 & \begin{tabular}{l}
Tuning indicator visual display \\
(Figure 5-1)
\end{tabular} \\
\hline XDS1 & & LAMPHOLDER: MIL-S-12883 type LH64BR2 & \begin{tabular}{l}
Holder for DSi \\
(Figure 5-1)
\end{tabular} \\
\hline XF1 & & FUSEHOLDER: Extractor post type per MIL-F-19207 & \begin{tabular}{l}
Holder for F1 \\
(Figure 5-1)
\end{tabular} \\
\hline XF2 & & Same as XF1 & \begin{tabular}{l}
Holder for F2 \\
(Figure 5-1)
\end{tabular} \\
\hline XQ1 & & SOCKET, TRANSISTOR: Three contacts; Grayhill part No. 22-11 & \begin{tabular}{l}
Socket for Q 1 \\
(Figure 6-3)
\end{tabular} \\
\hline XQ2 & & Same as XQ1 & \begin{tabular}{l}
Socket for Q2 \\
(Figure 6-3)
\end{tabular} \\
\hline XQ3 & & Same as XQ1 & \begin{tabular}{l}
Socket for Q3 \\
(Figure 6-3)
\end{tabular} \\
\hline XQ4 & & Not used & \\
\hline XQ5 & & Not used & \\
\hline XQ6 & & Same as XQ1 & \begin{tabular}{l}
Socket for Q6 \\
(Figure 6-4)
\end{tabular} \\
\hline XQ7 & & Same as XQ1 & \begin{tabular}{l}
Socket for Q7 \\
(Figure 6-4)
\end{tabular} \\
\hline XQ8 & & Same as XQ1 & Socket for Q8 (Figure 6-4) \\
\hline XQ9 & & Same as XQ1 & \begin{tabular}{l}
Socket for Q9 \\
(Figure 6-4)
\end{tabular} \\
\hline XQ10 & & Same as XQ1 & \begin{tabular}{l}
Socket for Q10 \\
(Figure 6-4)
\end{tabular} \\
\hline XQ11 & & Same as XQ1 & Socket for Q11 (Figure 6-4) \\
\hline
\end{tabular}

TABLE 7-1. CぃiPARATOR-CONVERTER GROUP AN/URA-17, MAT:TENANTE PARTS LIST (Continued)
\begin{tabular}{|c|c|c|c|}
\hline REF. DESIG. & 0
0
0
0 & NAME AND DESCRIPTION & LOCATING FUNCTION \\
\hline XQ12 & & Same as XQ1 & Socket for Q12 (Figure 6-4) \\
\hline XQ13 & & Same as XQ1 & \begin{tabular}{l}
Socket for 013 \\
(Figure 6-3)
\end{tabular} \\
\hline XQ14 & & Same as XQ1 & \begin{tabular}{l}
Socket for Q14 \\
(Figure 6-3)
\end{tabular} \\
\hline XQ15 & & Same as XQI & Socket for Q15 (Figure 6-3) \\
\hline XQ16 & & Same as XQI & Socket for Q16 (Figure 6-3) \\
\hline XQ17 & & Same as XQ1 & \begin{tabular}{l}
Socket for Q17 \\
(Figure 6-3)
\end{tabular} \\
\hline XQ18 & & Same as XQ1 & Socket for Q18 (Figure 6-3) \\
\hline XQ19 & & Same as XQ1 & Socket for Q19 (Figure 6-4) \\
\hline XQ20 & & Not used & \\
\hline XQ21 & & Same as XQ1 & Socket for Q21 (Figure 6-4) \\
\hline XQ22 & & Same as XQ1 & Socket for Q22 (Figure 6-4) \\
\hline XQ23 & & Not used & \\
\hline XQ24 & & Same as XQ1 & Socket for Q24 (Figure 6-4) \\
\hline XV1 & & SOCKET, ELECTRON TUBE: 12 pin, per MIL-S-12883; Hoffman part No. 1949900091; Cinch Mfg. Co., type T-9470-12 & \begin{tabular}{l}
Socket for V1 \\
(Figure 5-1)
\end{tabular} \\
\hline
\end{tabular}

TABLE 7-1. COMPARATOR-CONVERTER GROUP AN/URA-17, MAINTENANCE PARTS LIST (Continued)


TABLE 7-2. COMPARATOR-CONVERTER GROUP AN/URA-17, LIST OF MANUFACTURERS
\begin{tabular}{|c|c|c|}
\hline ABBREVIATION & NAME & ADDRESS \\
\hline \multirow[t]{6}{*}{CTC} & Cambridge Thermionic Corp. & Cambridge, Mass. \\
\hline & Cannon Electric Co. & Los Angeles, Calif. \\
\hline & Cinch Mfg. Co. & Chicago, 111. \\
\hline & Delco Radio (Div. General Motors Corp.) & Detroit, M1ch. \\
\hline & Electroboard Corp. & Costa Mesa, Calif. \\
\hline & General Electric Co. & Schenectady, N. Y. \\
\hline \multirow[t]{3}{*}{Grayhill} & Grayhill Co. & Chicago, 111. \\
\hline & Hoffman Electronics Corp. & Los Angeles, Calif. \\
\hline & Hoffman Semiconductor (Div. of Hoffman Electronics Corp.) & El Monte, Callf. \\
\hline Littelfuse & Littelfuse, Inc. & Chicago, Ill. \\
\hline \multirow[t]{2}{*}{Oak Mig.} & Oak Mfg. Co. & Chicago, 111. \\
\hline & Pacific Semiconductor, Inc. & Culver City, Calif. \\
\hline RCA & Radio Corporation of America & New York, N. Y. \\
\hline \multirow[t]{5}{*}{Sprague} & Sprague Electric Co. & New York, N. Y. \\
\hline & Sylvania Electric Products, Inc. & New York, N. Y. \\
\hline & Texas Instrument Corp. & Dallas, Texas \\
\hline & Transonic, Inc. & Bakersfield, Calif. \\
\hline & Unimax Switch (Div. W. L. Maxson Corp.) & Wallingford, Conn. \\
\hline
\end{tabular}
SUBJECT
A
PARA-
GRAPH
(Figure)
*Table
\begin{tabular}{|c|c|c|}
\hline SUBJECT
C - Continued & \multicolumn{2}{|l|}{\begin{tabular}{l}
PARA- \\
GRAPH \\
(Figure) \\
*Table
\end{tabular}} \\
\hline Operator's Routine Check .... & & *3-2 \\
\hline Operator's Trouble-Shooting.. & & *3-3 \\
\hline Chassis Removal.............. & & 6-3¢(1) \\
\hline \multicolumn{3}{|l|}{Checks:} \\
\hline \multicolumn{3}{|l|}{Daily Check for Correct} \\
\hline Electrical & & 2-5ㄹ(2) \\
\hline Mechanical .................. & & 2-5르() \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Comparator............ 4 -2¢ \((3),(4-5),(5-4)\)
Complement:}} \\
\hline & & \\
\hline Diode . & & *1-6 \\
\hline Transistor & & *1-5 \\
\hline \multicolumn{3}{|l|}{Controls:} \\
\hline Cathode-Ray Tube . . . . . . . . . & & *2-3 \\
\hline Front Panel. & (3-1), & , *3-1 \\
\hline \multicolumn{3}{|l|}{D} \\
\hline \multicolumn{3}{|l|}{Data:} \\
\hline Quick Reference. & & 1-5 \\
\hline Filter and Transformer & & \\
\hline Resistance & & (6-2) \\
\hline Shipping. & & *1-4 \\
\hline \multicolumn{3}{|l|}{Daily Check for Correct} \\
\hline Diversity Operation. & 3-4c, & , (3-3) \\
\hline \multicolumn{3}{|l|}{DC Differential Amplifier:} \\
\hline Adjustments................. & 6-2i, & , (5-6) \\
\hline Functional Operation. & & 4-2¢(1) \\
\hline DC Limiter & 4-2 \({ }_{\text {c (4), }}\) & , (5-6) \\
\hline Detector . . . . . . .. . . . . . . . . 4-2 & ), (4-4), & , (5-4) \\
\hline \multicolumn{3}{|l|}{Diagrams:} \\
\hline Comparator, Simplified...... & & (4-5) \\
\hline Detector, Simplified & & (4-4) \\
\hline Functional Block & 4-1.e, & , (4-2) \\
\hline Interconnecting. . & (2-4), & , (2-5) \\
\hline Keyer Circuits, Schematic... & & (5-6) \\
\hline Loop Keyer and Teletype Printer Keying Circuits.... & & (4-6) \\
\hline Overall Schematic............ & & (6-5) \\
\hline Power Supply Schematic & & (5-8) \\
\hline \multicolumn{3}{|l|}{Primary Power Distribution} \\
\hline Schematic & & (5-9) \\
\hline Simplified Block & 4-1 d, & , (4-1) \\
\hline \multicolumn{3}{|l|}{Signal Processing Circuits} \\
\hline Schematic . . . . . . . . . . & & (5-4) \\
\hline \multicolumn{3}{|l|}{Voltage and Resistance Diagrams:} \\
\hline Keyer Circuits. & & (5-5) \\
\hline Power Supplies ........... & & (5-7) \\
\hline
\end{tabular}

ORIGINAL
\begin{tabular}{cc} 
& \begin{tabular}{c} 
PARA- \\
SUBJECT
\end{tabular} \\
& GRAPH \\
D-Continued & (Figure) \\
& Trable
\end{tabular}

Wiring
(6-3), (6-4)
Diode Complement
*1-6
Discriminator:
Functional Operation. ..... 4-2b (3), (4-3), (6-3)
Response Curves
(4-3)
Tests
6-3d(7). (6-1)
Diverstty Operation.............. 1-2, 3-1c, 3-2g(2)

\section*{E}
\begin{tabular}{|c|c|}
\hline Emergency Maintenance. & 3-4if \\
\hline \multicolumn{2}{|l|}{Equipment:} \\
\hline Accessory. & 1-3, (1-1), 2-1 \\
\hline \multicolumn{2}{|l|}{Mounting . . . . . . . . . . . . (2-1), (2-2), (2-3), 2-4} \\
\hline Supplied & *1-1, (1-1) \\
\hline Required but not Supplied . . . & *1-2 \\
\hline \multicolumn{2}{|l|}{Test Equipment Required but} \\
\hline Similarities. & 1-6e \\
\hline \multicolumn{2}{|l|}{Electrical:} \\
\hline Pre-Operational Tests. & 2-5 \({ }_{\text {a (2) (b) }}\) \\
\hline Operational Tests & 2-5 \({ }_{\text {a (2)(c) }}\) \\
\hline External Tuning Indicator ...... & 1-3 \\
\hline \multicolumn{2}{|l|}{F} \\
\hline Factory or Field Changes . . . . . & 1-4 \\
\hline Failure Report & 6-1 \\
\hline \multicolumn{2}{|l|}{Filters:} \\
\hline Bandpass, Functional Operation & 4-2 \({ }^{\text {b }}(1), \quad 6-2\) \\
\hline Bandpass, Tests & 6-3d(6), (5-4) \\
\hline \multicolumn{2}{|l|}{Lowpass Keying, Functional} \\
\hline Operation & 4-2b(6), *6-2 \\
\hline Lowpass Keying, Tests & 6-3d(8), (5-4) \\
\hline Resistance Data. . & (6-2) \\
\hline Frequency-Diversity .. & 1-2 \\
\hline \multicolumn{2}{|l|}{Frequency Shift Method of} \\
\hline Communication & 3-1b \\
\hline Frequencies, Operating & 1-5b \\
\hline Frunt Panel Controls & (3-1), *3-1 \\
\hline \multicolumn{2}{|l|}{Functional Description:} \\
\hline Diversity Operation & 4-1b \\
\hline Overall Operation .. & 4-1 \\
\hline Single-Receiver Operation ... & 4-1c \\
\hline Fuse Replacement... & 3-4e \\
\hline
\end{tabular}
I

Indicator Lamp Replacement .
3-4d
\begin{tabular}{cl} 
& \begin{tabular}{c} 
PARA- \\
SUBJECT
\end{tabular} \\
& GRAPH \\
I - Continued & (Figure
\end{tabular}

Indicator, Tuning:
External ..................... 1 -3
Functional Operation.......... 4-2c(7)
Presentations................. 3-2d. (3-2)
Input Signal, af ................. 1-5a
Input Lines, Audio.............. \(2-4\) c(3)
Inspection and Adjustments..... 2-5
Installation:
Inspection .................... 2-5
Layout ......................... 2-3
Requitrements . . . . . . . . . . . . . . . (2-1), (2-2), (2-3)
Interconnections
Cables for Diversity Operation 2-2, (2-5)
Cables for Single-Receiver Operation
*2-1, (2-4)

\section*{K}

Keјег, Loop................. 4 . \(2 \underline{\text { c ( }}\) (5), (4-6), (5-6)
Keying Fllter:
Functional Operation ......... \(4-2 \underline{b}(6)\), 6-2
Tests......................... 6-3d(7)
Keying Speeds, Maximum ...... 1-5c
Key Part....................... 7 - \(\overline{2}\)
L


\section*{M}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Maintenance:} \\
\hline Energency & 3-4f \\
\hline Operator's & 3-4 \\
\hline Maintenance Standards & 6-2b \\
\hline \multicolumn{2}{|l|}{Malfunction During Diversity} \\
\hline Operation & 5-3d(2) \\
\hline \multicolumn{2}{|l|}{Malfunction During Single-} \\
\hline Recelver Operation & 5-3d(1) \\
\hline Manufacturers, List of. & *7-2 \\
\hline Mechanical Tests & 2-5a \\
\hline Mark Lock-Up & 4-2¢(6), (5-4) \\
\hline
\end{tabular}

PARA-
SUBJECT GKAPH(Figure)
P-Continued *Table
Dismounting Equipment ..... 2-6b
Packing ..... 2-6c
Presentations, Tuning Indicator. ..... (3-2)
Primary Power Distribution Diagram ..... (5-9)
Principles of Operation ..... 4
Publications Required but not Supplied ..... *1-2
R
Rack-Mounting AN/URA-17 ..... 2-4 b(3)
Rack-Mounting CV -483/URA-17. ..... \(2-4 \mathrm{~b}(4)\)
Receiver Tuning. ..... 3-2e
Reception:
Diversity ..... 3-1c
Single-Receiver ..... 3-1d
Reference Data ..... 1-5
Removal:
Chassis ..... 6-3c(1)
Receptacle Panel ..... \(6-3 \mathrm{c}(4)\)
Repair ..... 6
Replacement:
Cathode-Ray Tube ..... 6-3d(3)
Filter ..... 6-3c(2)
Fuse ..... 3-4e
Indicator Lamp ..... 3-4d
Printed Circuit Board ..... 6-3c(3)
Rotary Switch Wafer ..... 6-3d(5)
Transformer ..... \(6-3 \mathrm{c}(2)\)
Transistor ..... 6-3d(2)
Transistor Socket ..... 6-3 (4)
Report, Failure ..... 6-1
Reshipment, Preparation for ..... 2-6
Resistance Data:
Filter and Transformer ..... (6-2)
Transistor .................. (5-3), (5-5), (5-7)
Routine Check Chart, Operator's ..... *3-2

\section*{S}
Schematic Diagram:(4-5)
Keyer Circuits ..... (5-6)
Overall. ..... (6-5)
Power Supplies ..... (5-8)
Primary Power Distribution ..... (5-9)
Signal Processing Circuits ..... (5-4)
Teletype Printer DC Keying
\begin{tabular}{|c|c|}
\hline SUBJECT
S - Continued & \begin{tabular}{l}
PARA \\
GRAPH \\
(Figure) \\
*Table
\end{tabular} \\
\hline Relay Circuit, Simplified.... & (2-11) \\
\hline Shlpping Data & *1-4 \\
\hline Signal Processing Circuits ..... & 4-2b, (5-4) \\
\hline Signal Tracing Oscilloscope Patterns & *5-5 \\
\hline Single-Recelver Operation. . . . . & 3-1d, 3-2g(1) \\
\hline Space Diversity & 1-2 \\
\hline Standards. & 6-2b \\
\hline \multicolumn{2}{|l|}{T} \\
\hline Teletype Printer DC Keying
Relay Circuit, Simplified & \\
\hline Relay Circuit, Simplified & \\
\hline Schematic & (2-11) \\
\hline Terminal Board Wiring Diagrams & (6-3), (6-4; \\
\hline \multicolumn{2}{|l|}{Tests:} \\
\hline Bandpass Filter . . . . . . . . . . . & 6-3d(6) \\
\hline Discriminator & 6-3d(7) \\
\hline Electrical, Operational & 2-5a(2)(c) \\
\hline Electrical, Pre-Operational.. & 2-5a(2)(b) \\
\hline Mechanical & 2-5려(1) \\
\hline Test Points, Location of & (5-2) \\
\hline Transformer and Filter & \\
\hline Resistance Data & (6-2) \\
\hline \multicolumn{2}{|l|}{Transistor.} \\
\hline Base Data . . . . . . . . . . . . . . . (5-3), & ), (5-5), (5-7) \\
\hline Complement & *1-5 \\
\hline Voltage and Resistance Data . . (5-3), & ), (5-5), (5-7) \\
\hline \multicolumn{2}{|l|}{Trouble-Shooting:} \\
\hline Keyer Circuits . . . . . . . . . . . . . . (5-5 & \[
\text { ), }(5-6), * 5-5
\]
\[
4), * 5-3,5-4 .
\] \\
\hline Operator's Chart . & *3-3 \\
\hline System . . . . . . . . . . . . . . . . . . & 5-3, *5-1 \\
\hline
\end{tabular}

PARA-
GRAPH (Figure) *Table

Relay Circuit, Simplified....
Shipping Data ....................
Signal Processing Circuits . . . . .
Sigal Tracing Oscilloscope Patterns
Space Diversity ..................
Standards.

\section*{T}

Teletype Printer DC Keying Relay Circuit, Simplified Schematic (6-3), (6-4) Tests:

Bandpass Filter
6-3d(6)
6-3d(7)
2-5a(2)(c)
2-5a(2)(b)
2-5a(1)
Test Points, Location of (5-2)
\begin{tabular}{|c|c|}
\hline SURJECT
T - Continued & \begin{tabular}{l}
PARA- \\
GRAPH \\
(Figure) \\
*Table
\end{tabular} \\
\hline Power Supplies........ *5-4, & 5-4d, (5-7), (5-8) \\
\hline Signal Processing Circuits ... & \[
\begin{aligned}
& (5-4),(5-3), * 5-5, \\
& (5-3), * 5-2,5-4 \underline{b}
\end{aligned}
\] \\
\hline Test Equipment Required for. . & 5-2 \\
\hline Malfunction During Diversity & \\
\hline Operation. . . . . . . . . . . . . . & 5-3 d (2) \\
\hline Malfunction During Single & \\
\hline Recelver Operation........ & 5-3d(1) \\
\hline Troubles, Typical.............. & *5-6 \\
\hline Tuning Adjustments: & \\
\hline Diversity Operation & 3-2 \({ }^{\text {e }}\) (2) \\
\hline Single-Recelver Operation ... & 3-2e(1) \\
\hline Tuning Indicator: & \\
\hline Controls. & *2-3, (2-10) \\
\hline External & 1-3, 2-3 \\
\hline Functional Operation & 4-2c(7) \\
\hline Presentations. & 3-2d, (3-2j \\
\hline Cathode-Ray Tube & \\
\hline Replacement. & 6-3d(3) \\
\hline Tuning and Adjustment: & 6-2 \\
\hline Test Equipment Required for . & 6-2c \\
\hline U & \\
\hline Unpacking and Handling & 2-1 \\
\hline V & \\
\hline Voltages, Transistor .......... & (5-3), (5-5), (5-7) \\
\hline W & \\
\hline Wiring Diagrams............... & (6-3), (6-4) \\
\hline
\end{tabular}

PARA-
GRAPH
(Figure)
*Table
Power Supplies. . . . . . . *5-4, 5-4d, (5-7), (5-8)
Signal Processing Circuits ... (5-4), (5-3), *5-5, (5-3), *5-2, 5-4b
Test Equipment Required for. . 5-2
Malfunction During Diversity Operation. ................... .

5-3 d(2)

Tuning Adjustments:
Diversity Operation
3-2e(2)
Single-Recelver Operation ... 3-2e(1)
Tuning Indicator:
External ..................... 1 1-3, 2-3
Functional Operation ........ 4-2 \(\mathbf{~ ( 7 )}\)
Presentations................. 3-2d, (3-2j
Cathode-Ray Tube
Replacement................ 6-3d(3)
uning and Adjustment:

U

Wiring Diagrams
(6-3), (6-4)
-

0


TEMPORARY CORRECTION T-1 TO TECHNICAL MANUAL FOR COMPARATOR-CONVERTER GROUP AN/URA-17, NAVSHIPS 94028

This temaporary correctlon changes the manual to reflect the equipment changes made as the result of dealgn changes.

Make the following pen and ink correctlons. Insert thls temporary correction in the technical manual immedlataly after the front cover.
\begin{tabular}{|c|c|c|c|}
\hline PAGE NO. & Change in EFFECT & PARA \& LINE LE. FIG \& LOCATION & ACTION \\
\hline 1-7 & ORIG. & TABLE 1-6 & Opposite Q13, delete the "1" In "2N333" column and add a " 1 " In the "2N336" column. Correct totals. \\
\hline 1-8 & ORIG. & TABLE 1-6 & Delete "CR33" and the "1" under "1N1731" on same llne. Correct totals. \\
\hline \multirow[t]{9}{*}{4-6} & \multirow[t]{9}{*}{ORIG.} & Second para under "4-2c(6) MARK LOCK-UP" & \\
\hline & & lst line: & Change "C19" to "C32" \\
\hline & & 2nd line: & Change "CR10" to "CR11" \\
\hline & & 8th line: & Change "C19" to "C32" \\
\hline & & 13th llne: & Change "C19" to "C32" \\
\hline & & Para 4-2d(3) & \\
\hline & & 2nd line: & Change "two" to "one", \\
\hline & & & Change "dlodes" to "dlode". Delete "and CR33". \\
\hline & & 3rd llne: & Delete "eerles connected". \\
\hline \multirow[t]{2}{*}{5-6} & \multirow[t]{2}{*}{ORIG.} & Flg. 5-3, & \\
\hline & & Top Left Corner. & Change voltages and resletances of Q4 and Q5 as shown below: \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { PAGE } \\
& \text { NO. } \\
& \hline
\end{aligned}
\] & CHANGE IN
\(\qquad\) & PNRA \& LINE OR FIG \& LOCATION & ACTION \\
\hline 6-7, \(5-8\) & ORIG. & Flg. 6-4, rlght olde. & Cbange values of R23 and R24 from "120" to "180" \\
\hline & & , & Change value of C12 from "47" to " 120 ". Delete "R28" from achematio. (Do not ehort out Ite terminals.) \\
\hline & & & Change wlring of "T1" and "T2" primary wibdinge as shown below: \\
\hline
\end{tabular}


ORIG.
FIg. 5-5, Top.
Change Q13 from "2N333" to "2N336". Change voltages and reslstances of Q11 and Q13 as shown below:

\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { PAGE } \\
& \text { NO. } \\
& \hline
\end{aligned}
\] & OllaNGE IN EFFECT & PARA \& LINE OR FIG \& LOCATION & ACTION \\
\hline \[
\begin{aligned}
& 5-11, \\
& 5-12
\end{aligned}
\] & ORIG. & Fig. 5-6, Center. & \begin{tabular}{l}
Change value of R47 from "1 ME(7" to " 1.8 MEG ". \\
Change value of R48 from " 100 K " to " 47 K ". \\
Change value of H49 from " 10 K " to " 15 K ". \\
Change viluc of R51 from " 33 K " to " 47 K ". \\
Change Q13 from "2N333" to "2N33G".
\end{tabular} \\
\hline 5-13 & ORIG. & STEP 2, under "NEXT STEP", 2nd llne. & Delete "and Clis3". \\
\hline 5-15, 5-16 & ORIG. & Fig. 6-8 & Delete "CRi33" compl etely. Add lino across its terminals. \\
\hline 6-11, 6-12 & ORIG. & \begin{tabular}{l}
FIg. 0-3, \\
Lower left cornur of TB-2.
\end{tabular} & \begin{tabular}{l}
Delete wires "10-39" and "9-33" from maln cable nod delete terminal "1l" from TB-2. Number terminel at bottom of R28 as "11". Delete "R28". \\
Consect now "10-39" and "9-33" wires from new terminal " 11 " to main cable.
\end{tabular} \\
\hline 6-13, 6-14 & ORIG. & \begin{tabular}{l}
Fig. 0-4, \\
Bottom, center.
\end{tabular} & Move "1-י" end lead of CR32 from present terminal to the terminal to which " + " end lead of CR33 is connected. Delete CR33 entirely. Move lify to connect between termlnale 28 and 29 on TB-1. \\
\hline 6-16, 6-16 & ORIG. & Fig. 6-5. & See ACTION column for Figures 5-4, 5-6, and 5-8 and correct as Indicated. \\
\hline 7-4 & ORIG. & TABLE 7-1. & Delete CR33 entry entirely. \\
\hline 7-6 & ORIG. & TABLE 7-1. NAME \& DESCR. Column. & Change description of C12 to "Same as C13'.'. \\
\hline 7-9 & ORIG. & \begin{tabular}{l}
1'AJBLE 7-1.' \\
NAME \& DESCR. Column.
\end{tabular} & Change description of Q13 to "Same as Q11". \\
\hline 7-11 & ORIG. & TABLE 7-1, NAME \& DESCR. Column. & \begin{tabular}{l}
In descr:Iptlon of R23, \\
1at llne: Change " 120 " to " 180 ". \\
2nd line: Change "RC32GF121K" to "RC32GF181K". \\
3rdllne: Change "MS35044-218" to "MS35044-219".
\end{tabular} \\
\hline 7-12 & ORIG. & TABLE 7-1, & Deleto R28 entry entirely. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { PAGE } \\
& \text { NO. } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { CHANGE IN } \\
& \text { EFFECT } \\
& \hline
\end{aligned}
\] & PARA \& LINE OR FIG \& LOCATION & ACTION \\
\hline \multirow[t]{5}{*}{7-13} & \multirow[t]{5}{*}{ORIG.} & TABLE 7-1. & In description of R47, \\
\hline & & NAME \& DESCR. & 1st lise: Change "l MEG" to "1.8 MFG". \\
\hline & & Colums. & 2nd line: Change "RC20GF105K" to "RC20GF185K". \\
\hline & & & 3rd llne: Change "MS35043-220" to "MS35043-223". \\
\hline & & & Change description of R48 to "Same as R3". Change description of R49 to "Same as R30". Change description of R51 to "Same as R3". \\
\hline 7-16 & ORIG. & TABLE 7-1. NAME \& DESCR. Colums. & Change description of R83 to "RESIS'TOR, FIXED, COMPOSITION: \(100 \mathrm{~K} \pm 10 \%, 1 / 2 w\), MaL-R-11, type RC20GF104K; part no. MS35043-25". \\
\hline
\end{tabular}

\section*{TEMPORARY CORRECTYON T-2 to TECKNICAL MANUAL FOR COMPARATOR-CONVERTER AN/URA-17}

This temporary correction revises the manual to reflect the equipment changes made by Field Change 8-AN/URA-17 and 3-AN/URA-17. The purposes of these field changes are to replace resiators R20 and R22 to improve reliablity of capacitors C-12 and C-13, and replace realator R71 to provide better centering of -48 volt DC power supply adjustment range. The field changes apply to AN/FRA equipments, eerials A1 through A155. All later AN//8RA-17 equipments were corrected by identical production changee.

When these changes are included in the manual, the manual shall cover the equipment as though Field Changes 2-AN/URA-17 and 3-AN/URA-17 had been accomplished on the equipment. This correction doee not ouperade any other correctlinne or changes.

Maintenance Support Activities shall make this correction in the technical marral immedistely but shall keep the euperseded data intact for support of equipments that have not been modified.

Holders of equjpment accompanied by technical manuale shall not make this correction in the mamal until accomplishment of the field change.

Make the following pen-and-ink corrections. Insert this temporary correction in the technical manual fmomediatily atter the front cover and preceding T-1.
1. Tahle 1-1. Comparator-Converter Group AN/URA-17, Equipment Supplied.

Add, Just above " 2 -Technical Mamal - NAVSHIPS 94028": 6-CLAMP, CABLE -AN3057-6.
2. Figure 5-4. Frequency Shift Converter CV-483/URA-17, Signal Proceasing Circuite, Functional Schematic Diagram.

Change values of R20 and R22 from 1800 to 2200.
3. Figure 5-8. Frequency Shift Converter CV-483/URA-17, Power Supplies, Functional Schematic Dlagram.

Change value of R71 from 2200 to 2700.
4. Paragraph 6-2 \(\underline{,}\), "MARK AND SPACE GAIN CONTROL ADJUSTMENTS."

Step 3, line 2: Change WIDE to NARROW
Step 5, line 1: Change 2550 to 1000
Step 8, line 2: Change FL3 to FL2
Step 9, linee 1 and 2:

Change FL3 to FL2
Step 10, line 3: Change FL3 to FL2
Step 11, line 2: Change FL3 to FL2
5. Paragraph 6-2i, "DC DIFFERENTIAL AMPLEFER ADJUSTMENTS."
Step 9, line 2: Change 3200 to 1200

Step 14, line 3:
Change +32 to +35
Step 15, lines 5, 6 and 7:
Stepe 16, 17. and 18:

Delete last two sentences
and 18: Delete
Step 19: Change to "Step 16 "
6. Figire 6-5. Frequency Shift Converter CV-483/URA-17, Over-all Schemstic Diagram.

Change value of R71 from 2200 to 2700. Change values of R20 and R22 from 1800 to 2200.
7. Table 7-1. Comparator-Converter Group AN/URA-17, Maintenance Parta Liat.

Add: "E2-CLAMP, CABLE: AN3057-6." Secure cables to connectors.
Change "Name and Description" column entry for R20 to: RESESTOR, FDXED, COMPOSITION:
2. \(2 \mathrm{k}+10 \%\), 1 w ; MIL-R-11 type RC32GF222K; part MS35044-15.

Change "Name and Description" column entry for R71 to: RESISTOR, FDXED, COMPOSITION:
2. \(7 \mathrm{k}+10 \%\), \(1 / 2 \mathrm{w}\); MLI-R-11 type RC20GF272K; part MS35043-206.
8. Record this action on RECORD OF CORRECTIONS MADE page.

TEMPORARY CORRECTION T - 3 to TECHNICAL MANUAL FOR COMPARATOR CONVERTER AN/URA-17

This temporary correction revises the manual to reflect production changes mode to the equipment to reduce radio interference. This change applies to all equipments supplied under Contracts NObsr 87493 and NObsr 89307. This correction does not supersede any other corrections or changes.

Maintenonce Support Activities shall make this correction in the technical manual immediately but shall keep the superseded data intact for support of equipments that do not include this production change.

Make the following pen-and-ink corrections. Insert this temporary correction in the technical manual immediately after the front cover and preceding T-2.
\begin{tabular}{c} 
PAGE \\
NO. \\
\hline \(5-15\) \\
\(5-16\)
\end{tabular}

6-13
\(6-14\)
ORIG.

6-15
6-16

7-6
ORIG.

PARA \& LINE OR FIG \& LOCATION ACTION

Figure 5-8
Top right of center

Add C-33 across terminals 5 \& 6 of T3 as follows:


Figure 6-4
Top, Center
Add C-33 across terminals 5 \& 6 of T3 as follows:

T3


See ACTION column for Figure \(5-8\) and correct as indicated.

After C32-IIC, Add C33-38

Enter the following information ofter C32.
\begin{tabular}{|l|l|l|l|}
\hline C33 & \begin{tabular}{l} 
Capacitor, Fixed, Mica Dielectric \\
430 uuf \(-5 \%, 500\) vdc MIL-C-58 Type CMI5E43 IKN3
\end{tabular} & \begin{tabular}{l} 
Across T 3 Reduces \\
radio interference \\
(Figure 6-4)
\end{tabular} \\
\hline
\end{tabular}
\(\bullet\) -

\section*{TEIPORARY CORRECTION T-3 TO TECHNICAL MANOAL POR COMPARATOR-COMVERTER GROUP AR/ORA-17 NAVSEIPS 24028}

This temporary oorreotion revises the manual to refleot the equipment ohanges made by field ohange 4-AN/ORA-17. The purpose of this fiold ohange is to roplace wide bandpass filter FLl and wide disoriminator FL3 with filtors having a now conter frequenoy of 2000 ops. The fiold ohange applies to AN/URA-17.

Whon this ohange is inoluded in the manual, the manal shall cover the equipment as though Pield Change 4-AN/URA-17 had been acomplished on the equipment. This correction does not aupersede any other corrections or ohanges.

Maintenance Support Aotivities shall wake this oorreotion in the teohnioal manual immediately but shall koop the aupersoded data intact for support of nquipmonts that have not boon modifiod.

Holders of equipmont aoompanied by technical manuals shall not make this correotion in the manual until acoomplishment of the field ohange.

Make the following pen-and-ink correotions. Insert this temporary correction in the teohnical manual imodiately after the front oover and preooding T-2.
1. Front oover, uodor AR/ORA-17, add: "AR/ORA-53".
2. Pitle shoot, undor AR/ORA-17, add: "AN/סRA-53".

CORRBOTIOR T-3
HavseIps 0967-034-9011

\section*{T-3 to RAVSBIPS 94028}
3. Paragraph l-4b, add Pollowing aontonce: "AI/ORA-53: Wid shift, 2000 ops mean frequonoj; width of ahift, 200 to 2000 ops."
4. Paragraph 3-2 g (1), stop 6, add Pollowing sontonco: "AR/ORA-53: adjuat reoeiver bfo to 2.0 KC for wide-ahift aignala".
5. Paragraph 3-2 g (2), atep 6, add following sentonce: "AR/ORA-53: adjust recoiver bfo to 2.0 IC for wide-shift aignala".
6. Paragraph 3-3 \(£(3)(\underline{A})\), add Pollowing sontonco: "AR/URA-53: aet reoelver bfo to 2.0 IC for wide-ahift aignala".
7. Paragraph 4-2 b (1), add following sontonoe: "AR/JRA-53, the wide filter, FLl, is wed when the oenter frequenoj of the input algael is 2000 ops with shifts of 100 to 500 ops eaoh aide of contor.
8. Paragraph 4-2 b (3), add following now aubparagraph:
"Por AB/ORA-53, the wide-ah1ft disoriminator, FL3, is used for input algnals with shift widthe of 200 and 1000 opa. The wide shift disoriminator contains two resonant notwords with a oross orer froquenos of 2000 ops \(\pm 40\) ops. The output from terminal 1 increasea with frequenoj to about 2850 ops. Tho output from torminal 4 inoreases as frequenos deoreases to ama imur at approximetoly 1150 ops".
9. Pigure 4-3, response ourve for wide-shift disoriminator, PL3, add Pollowing note:
"Por AI/ORA-5.3, the oross-over frequenos is 2000 ops with a lower frequonoy of 1500 opa for apace and an upper frequenoy
of 2500 ops for mark".
10. Paragraph 6-3d (6) (a), add Pollowing aontonco: "Por AN/ORA-53, sot audio oscillator to 2000 ops, measurod with frequenoy moter".
11. Table 6-2 under INPUT TERMNATION and ODTPOT TERMINATION columas for PLl, add: "AN/סRA-53: \(8000 \pm 5 \%\) at 2000 ops".
12. Table 6-2 under REQOIRED PREQUENCY column for FLl, add: "AR/ORA-53: 1500 to 2500 op 8".
13. Table 6-2 under INSERTION LOSS colum for FLl, add: "AR/ORA-53: 3 db macimum at 2000 ops".
14. Paragraph 6-3 d (7) (a). stop 10, add following sontence: "AB/ORA-53: Adjuat audio osolllator to 950 ops, uaing frequonoy moter, kooping output voltage at 6.0 voltg".
15. Paragraph 6-3 d (7) (a), stop 11, add Pollowing sontenoes: "AR/ORA-53: Inorease audio osoillator frequenoj in 50 ops stops to 3150 ops. Rooord multimotor voltage indioation at each frequenoy".
16. Paragraph 6-3 d (7) (a), atop 23, add following sontences: "A耳/ORA-53: Draw a atraight line botwoon 1650 and 2350 ops points. Prequenos deviation from ourve shall not be groator than 35 ops. Cross-over point ahall be botwoon 1950 and 2050 ops. Poaks shall be \(1150 \pm 100\) ops and \(2850 \pm 150\) ops.
17. Pigure 6-1 rosponse ourve for wide-shift disorim-
inator, add following note:

\section*{"AR/ORA-53: WIDE-SEIPT \\ Poaks: 1.15 KC and 2.85 KC SOA OP ABSOLOTE VOLTAGES AT}
\[
\begin{aligned}
& 1.65 \text { and } 2.35 \mathrm{KC}: 0.0 \pm 0.03 \mathrm{~V} \\
& \text { MINIMUN VOLTAGE CBABOE BEINERS } \\
& 1.65 \text { and } 2.35 \mathrm{KC}: 0.26 \mathrm{~V} \\
& \text { CEMTER PREQUENCY: } 2.00 \mathrm{KC} \pm 0.04 \mathrm{KC} \\
& \text { MAXIMUM LINEARITY DEVIATION: } 30 \mathrm{opa} .
\end{aligned}
\]
18. Figure 6-1, reaponse ourve for wide-shift disoriminator, add following soale:

AN/ORA-53:

19. Table 7-1, MAINTENAECE PARTS LIST, FLI, undor FAXB AND DESCRIPTION, add the following note:
"AN/ORA-53: PILTER BARDPASS: 2000 aps \(\pm 50\) ops oporating frequenct;

8000 ohms \(\pm 5 \%\) input/Output impedance at 2000 ops;
four terminala;
2 子1n. (1) by 2 子 in. (h) by 1 3/4 1n. (w) \({ }^{n}\).
20. Table 7-1, Mainferahce parts LIST, Fl3, undor harg

AED DESCRIPTION, add the following note:
"AI/ORA-53: PILIERR BAIDPASS: poaked at 1150 ops \(\pm 100\) ops and 2850 ops \(\pm 150\) ops with oross-over at 2000 ops \(\pm 40\) ops; four torminals; 2 in. (l) by \(13 / 4\) in. (h) by 1 it in. (W)".

\title{
TEMPORARY CHANGE T-4 TO TECHNICAL \\ MANUAL FOR COMPARATOR-CONVERTER \\ GROUP AN/URA-17 NAVSHIPS 0967-034-90 10 \\ (FORMERLY NAVSHIPS 94028)
}

This temporary change revises the manual to reflect equipment changes. The purpose of this change is to replace wide bandpass filter FLI and wide discriminator FL3 with filters having a new center frequency of 2000 cps. The field change applies to AN/URA=17.

This correction does not supersede any other corrections or changes.

Make the following pen-and-ink corrections. Insert this temporary correction in the technical manual immediately after the front cover and preceding T-3.
1. Front cover, under \(A N\) URA-17, add: "AN/URA-17B".
2. Title sheet, under AN/URA-17, add: "AN/URA-17B".
3. Paragraph 1-4b, d following sentence: "AN/URA-17B: Wide shift, 2000 cps mean frequency; width of shift, 200 to 1000 cps."
4. Paragraph 3-2g (1), step 6, add following sentence: "AN/URA-17B: adjust receiver bfo to 2.0 KC for wide-shift signals'".
5. Paragraph 3-2g (2), step 6, add following sentence: "AN/URA-17B: adjust receiver bfo to 2.0 KC for wide-shift signals".
6. Paragraph 3-3a (3) (a), add following sentence: "AN/URA-17B: set receiver bfo to 2.0 KC for wide-shift signals".

TEMPORARY CHANGE T-4 to
NAVSHIPS 0967-034-9012
7. Paragraph 4-2b (1), add following sentence: 'AN/URA-17B, the wide filter, FLI, is used when the center frequency of the input signal is 2000 cps with shifts of 100 to 500 cps each side of center.
8. Paragraph 4-2b (3), add following new subparagraph: "For AN/URA-17B, the wide-shift discriminator, \(F L 3\), is used for input signals with shift widths of 200 and 1000 cps. The wide shift discriminator contains two resonant networks with a cross over frequency of \(2000 \mathrm{cps} \not \leq 40 \mathrm{cps}\). The output from terminal 1 increases with frequency to about 2850 cps . The output from terminal 4 increases as frequency decreases to a maximum at approximately \(1150 \mathrm{cps}{ }^{1 \prime}\).
9. Figure 4-3, response curve for wide-shift discriminator, FL3, add following note:
"For AN/URA-17B, the cross-over frequency is 2000 cps with a lower frequency of 1500 cps for space and an upper frequency of 2500 cps for mark''.
10. Paragraph 6-3d (6) (a), add following sentence: "For AN/URA-17B, set audio oscillator to 2000 cps , measured with frequency meter'.
11. Table 6-2 under INPUT TERMINATION and OUTPUT TERMINATION columns for FLI, add: "AN/URA-17B: \(8000 \pm 5 \%\) at 2000 cps".
12. Table 6-2 under REQUIRED FREQUENCY column for FLI, add: 'AN/URA-17B: 1500 to 2500 cps".
13. Table 6-2 under INSERTION LOSS column for FLI, add: "AN/URA-17B: 3 db maximum at 2000 cps'".
14. Paragraph 6-3d (7) (a), step 10, add following sentence: "AN/URA-17B: adjust audio oscillator to 950 cps , using frequency meter, keeping output vol tage at 6.0 volts".
15. Paragraph 6-3d (7) (a), step 11, add following sentences:
"AN/URA-17B: lncrease audio oscillator frequency in 50 cps steps to 3150 cps. Record multimeter voltage indication at each frequency'.
16. Paragraph 6-3d (7) (a), step 13. add following sentences: "AN/URA-17B: Draw a straight line between 1650 and 2350 cps points. Frequency deviation from curve shall not be greater than 35 cps. Cross-over point shall be between 1950 and 2050 cps. Peaks shall be \(1150 \npreceq 100 \mathrm{cps}\) and \(2850 \npreceq 150\) sps".
17. Figure 6-1 response curve for wide-shift discriminator, add folilowing note:
"AN/URA-178: WIDE-SHIFT
Peaks: 1.15 KC and 2.85 KC
SUM OF ABSOLUTE VOLTAGES AT
1.65 and \(2.35 \mathrm{KC}: 0.0 \npreceq 0.03 \mathrm{~V}\)

MINIMUM VOLTAGE CHANGE BETWEEN
1.65 and \(2.35 \mathrm{KC}: 0.26 \mathrm{~V}\)

CENTER FREQUENCY: \(2.00 \mathrm{KC} £ 0.04 \mathrm{KC}\)
MAXIMUM LINEARITY DEVIATION: 30 cps'".
18. Figure 6-1, response curve for wide-shift discriminator, add following scale:

AN/URA-17B:
Under 1.8, add: "17.25".
Under 2.2, add: "1.65".
Under 2.6, add: "2.05".
Under 3.0, add: "2.45".

Page 3 of 4

> Under 3.4, add: "2.85".
19. Table 7-1, MAINTENANCE PARTS LIST, FLI, under NAME AND DESCRIPTION, add the following note:
"AN URA-17B: FILTER BANDPASS: \(2000 \mathrm{cps} \not \leq 50 \mathrm{cps}\) operating frequency: 8000 ohms \(£ 5 \%\) input/output impedance at 2000 cps ; four terminals;

2 1/4 in. (1) by 2 1/4 in. (h) by \(13 / 4 \mathrm{in}\). (W) M .
20. Table 7-1, MAINTENANCE PARTS LIST, FL3, under NAME AND DESCRIPTION, add the following note:
'AN URA-178: FILTER BANDPASS: peaked at 1150 cps \(£ 100 \mathrm{cps}\) and 2850 cps \(£ 150 \mathrm{cps}\) with cross-over at \(2000 \mathrm{cps} £ 40 \mathrm{cps}\); four terminals; \(21 / 4 \mathrm{in} .(1)\) by \(13 / 4 \mathrm{in} .(\mathrm{h})\) by \(1 / 2 \mathrm{in}(\mathrm{W}) \mathrm{l}\).

TEMPORARY CHANGE 5, NAVSHIPS 0967-034-9013, to TECHNICAL MANUAL FOR COMPARATOR-CONVERTER GROUP AN/URA-17A, NAVSHIPS 0967-0349010, formerly NAVSHIPS 94028.

PREPARED BY
Gulf Aerospace Corporation
Houston, Texas

This temporary change to the manual reflects the equipment changes in the Comparator-Converter Group AN/URA-17A as manufactured by Gulf Aerospace Corporation.

Make the following pen-and-ink correc:tions:
1. Throughout the manual, add "and AN/T" A-i7A" after every reference to Comparator-Converter Group AN/URA-17.
2. On page 1-1, paragraph 1-1, line 4, insert "and Contract NObsr 91222(FBM)" at the end of the line.
3. On page 7-22, Table 7-2, make the following additions:
\begin{tabular}{cll} 
Abbreviation & \multicolumn{1}{c}{ Name } & \multicolumn{1}{c}{ Address } \\
GAC & Dialco Electric Corp. & Brooklyn, N. Y. \\
& Gulf Aerospace Corp. & Houston, Texas \\
& Hughes Aircraft Corp. & Newport Beach, Calif. \\
TRW & Motorola Inc. & Phoenix, Arizona \\
& Wooldridge Inc. & Cleveland, Ohio \\
& United Transformer Co. & New York, N. Y.
\end{tabular}

Insert pages 2 through 8 of this tempory change prior to page 7-1 of the technical manual.

Insert this temporary change in the technical manual immediately after the front cover.

\section*{SUPPLEMENTARY PARTS LIST}

\section*{NOTE:}

Table 7-1 has been corrected by means of the following supplementary table. For any given item, always refer first to the supplementary table, since it completely supersedes any corresponding listing in the basic table. If no information is shown for a given item, refer to the basic table for the required information.
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{gathered}
\text { REF. } \\
\text { DESIG. }
\end{gathered}
\] & \[
\begin{aligned}
& \text { の } \\
& \text { 国 } \\
& 0 \\
& 0 \\
& 2
\end{aligned}
\] & NAME AND DESCRIPTION & LOCATING FUNCTION \\
\hline CR 7 & & SEMICONDUCTOR DEVICE, DIODE: Zener, Texas Instruments Inc., type 1N3025B & ```
Zener regulator, Q10
emitter
(Figure 6-4)
``` \\
\hline CR21 & & SEMICONDUCTOR DEVICE, DIODE: Zener, Texas Instruments Inc., type 1N3042B & \begin{tabular}{l}
Protects against inductive kickback from keyer relay \\
(Figure 6-3)
\end{tabular} \\
\hline CR27 & & SEMICONDUCTOR DEVICE, DIODE: Zener, Texas Instruments Inc., type 1N3029B & \begin{tabular}{l}
Bias stabilizer, Q19 emitter \\
(Figure 6-4)
\end{tabular} \\
\hline CR32 & & SEMICONDUCTOR DEVICE, DIODE: Silicon, TRW, Inc., type lN1731 & -560 vdc supply rectifier (Figure 6-4) \\
\hline Cl & & CAPACITOR, FIXED, ELECTROLYTIC: Tantalytic, \(6.8 \mathrm{uf}, 35 \mathrm{vdc}\) working, MIL type CS13BF685M & Coupling S1 to Ql base (Figure 6-3). \\
\hline C14 & & CAPACITOR, FIXED, ELECTROLYTIC: 20 uf \(-15 \%+50 \%, 60\) vdc working, MIL type CL65BK200MP3 & Decoupling, Q5 collector (Figure 6-3) \\
\hline Cl5 & & CAPACITOR, FIXED, PAPER DIELECTRIC: 0.22 uf \(\pm 10 \%, 100\) vdc, MIL type CP05A1KB224K3 & Decoupling, Q8 collector (Figure 6-4; \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{gathered}
\text { REF. } \\
\text { DESIG. }
\end{gathered}
\] & 0
\(1 / 2\)
0
0
7 & NAME AND DESCRIPTION & LOCATING FUNCTION \\
\hline C17 & & CAPACITOR, FIXED, ELECTROLYTIC: 50 uf \(-15 \%+50 \%\), 60 vdc working, MIL type CL65BK500MP3 & \begin{tabular}{l}
P/O axis restorer network \\
(Figure 6-4)
\end{tabular} \\
\hline C22 & & CAPACITOR, FIXED, ELECTROLYTIC: 25 uf \(-15 \%+50 \%\), 125 vdc , MIL type CL65BP250MP3 & P/O -48V power supply filter network (Figure 6-4) \\
\hline C27 & & CAPACITOR, FIXED, PAPER DIELECTRIC: dual section; 0. 1 uf \(+20 \%, 1000\) vdc working per section; MIL-C -25/4 type CP54B4EG104V1 & P/O -560 V power supply filter network (Figure 5-1) \\
\hline C31 & & Same as C27 & Same as C27 \\
\hline E1 & & TERMINAL STUD: silver plated brass term; 39/64 in. lg by l/4in. hex base; No. 6-32 threaded ceramic base; 2500 RMS breakdown voltage at 60 cps; CTC part No. 3650-2 & \begin{tabular}{l}
Grounded input center tap \\
(Figure 2-6)
\end{tabular} \\
\hline FL1 & & FILTER, BANDPASS: \(2550 \mathrm{cps}+50\) cps operating freq; 8000 ohms \(+5 \overline{\%}\) input/output impedance at \(2550^{-}\)cps; four terminals; 2-1/4in. lg by 2-1/4 in. \(h\) by \(1-3 / 4\) in. w; GAC dwg 000975 ; UTC, type BF442 & \begin{tabular}{l}
Wideband filter, input to SI \\
(Figure 5-1)
\end{tabular} \\
\hline FL2 & & FILTER, BANDPASS: peaked at 800 cps \(\pm 40 \mathrm{cps}\) and \(1200 \mathrm{cps}+40 \mathrm{cps}\) with crossover at \(1000 \mathrm{cps}+15 \mathrm{cps}\). four terminals, 2-1/4in. lg by l-3/4 in. h by l-1/2in. w, GAC part No. 000972 & \begin{tabular}{l}
Narrow-shift discriminator between Ql and Q2 or Q3 \\
(Figure 5-1)
\end{tabular} \\
\hline FL3 & & FILTER, BANDPASS: Peaked at \(1700 \mathrm{cps}+100 \mathrm{cps}\) and \(3400 \mathrm{cps}+150\) cps with crossover at \(2550 \mathrm{cps}+40\) cps; four terminals; 2-1/4in. l \(\bar{g}\) by 1-3/4 in. h by l-1/2 in. w; GAC dwg 000973; UTC, type BF440 & \begin{tabular}{l}
Wide-shift discriminator between Q1 and Q2 or Q3 \\
(Figure 5-1)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { KEF. } \\
& \text { MESIG. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { un } \\
& \text { H } \\
& 0 \\
& 0 \\
& Z
\end{aligned}
\] & NAME AND DESCRIPTION & LOCATING F UNCTION \\
\hline FL4 & & FILTER, BANDPASS, LOW PASS: Section A; 45 cps cuttoff frequency; 2 db or less insertion loss at 15 cus; 18 db at \(140 \mathrm{cps} ; 50 \mathrm{db}\) min at \(560 \mathrm{cps} ; 65 \mathrm{db}\) at 1500 cps to 8 kc ; \(20 \mathrm{k}+20 \%\) input and output impedance àt 5 cps; Section B: 175 cps cuttoff frequency, 2 db or less insertion loss at \(15 \mathrm{cps} ; 18 \mathrm{db}\) at \(560 \mathrm{cps} ; 50 \mathrm{db}\) at \(2240 \mathrm{cps} ; 65 \mathrm{db}\) at 4 kc to 8 kc ; GAC dwg 000974; UTC, type BF441 & \begin{tabular}{l}
Keying filter at input to Q6 \\
(Figure 5-1)
\end{tabular} \\
\hline K Tl & & KIT, ACCESSORY: GAC part No. 000927 & Repair parts kit \\
\hline Q1 & & TRANSISTOR: germanium, PNP; Motorola Inc., type 2N526 & Audio amplifier (Figure 6-3) \\
\hline Q10 & & TRANSISTOR: silicon, NPN; General Electric, type 2N657 & \begin{tabular}{l}
DC amplifier \\
(Figure 6-4)
\end{tabular} \\
\hline Q11 & & TRANSISTOR: germanium, NPN; Texas Instruments Inc., type 2N336 & Mark lock-up control (Figure 6-4) \\
\hline Q14 & & TRANSISTOR: germanium, PNP; Hughes Aircraft Co., type 2N328A & \begin{tabular}{l}
P/O dc limiter \\
(Figure 6-3)
\end{tabular} \\
\hline R23 & + & RESISTOR, FIXED, COMPOSITION: 120 ohirns \(+10 \%\), lw; MIL-R-11 type RC32ḠF121K; part No. MS35044-219 & Emitter bias, Q4 (Figure 6-3) \\
\hline R47 & & RESISTOR, FIXED, COMPOSITION: \(1 \mathrm{meg}+10 \%\), l/2 w; MIL-R-11 type RC20GF105K; part No. MS35043-223 & \begin{tabular}{l}
Voltage dropping resistor \\
(Figure 6-4)
\end{tabular} \\
\hline R48 & & Same as R3 & \begin{tabular}{l}
P/O biasing RC network for Qll \\
(Figure 6-4)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{gathered}
\text { REF. } \\
\text { DESIG. }
\end{gathered}
\] & \[
\begin{aligned}
& \text { n } \\
& \text { 1a } \\
& H \\
& 0 \\
& \text { Z }
\end{aligned}
\] & NAME AND DESCRIPTION & LOCATING FUNCTION \\
\hline R63 & & Same as R5 & \begin{tabular}{l}
Stabilizes dclimiter by feedback to Q13, Q15 emitters \\
(Figure 6-3)
\end{tabular} \\
\hline S1 & & SWITCH, ROTARY: First section, two position two shorting movable contacts, six fixed contacts; second section, two position three shorting movable contacts, nine fixed contacts; silver plated brass per QQ-B-613; non-sealed shaft per MIL-S-3786; solder type terminals on Mycalex sections; GAC part No. 000977 & SHIFT switch, selects bandpass filter and discriminator (Figure 3-1) \\
\hline S2 & & SWITCH, ROTARY: One section, two position; \(30^{\circ}\) positioning increments; two shorting moving contacts; six fixed contacts; silver plated brass per QQ-B-613; non-sealed shaft per MIL-S-3786; solder type terminals on Mycalex sections; GAC part No. 000976 & POLARITY switch, Changes polarity of signal to keying filter (Figure 3-1) \\
\hline S3 & & SWITCH, ROTARY: One section, three position; \(30^{\circ}\) positioning increments; two shorting moving contacts; six fixed contacts; silver plated brass per QQ-B-613; nonsealed shaft per MIL-S-3786; solder type terminals on Mycalex sections; GAC part No. 000978 & SPEED switch. Selects keying filter section (Figure 3-1) \\
\hline S4 & & SWITCH, ROTARY: One section, three position; \(30^{\circ}\) positioning increments; two shorting moving contacts; ten fixed contacts; silver plated brass per QQ-B-613; nonsealed shaft per MIL-S-3786; solder type terminals on Mycalex sections; GAC part No. 000979 & \begin{tabular}{l}
FUNCTION switch. \\
Selects input to comparator (Figure 3-1)
\end{tabular} \\
\hline
\end{tabular}

TEMPORARY CHANGE 5: 15 Nov 1966
NAVSHIPS 0967-034-9013
Page 5
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
REF. \\
DESIG.
\end{tabular} & \[
\begin{aligned}
& \text { y } \\
& \text { H1 } \\
& \text { H } \\
& \mathbf{z}
\end{aligned}
\] & NAME AND DESCRIPTION & LOCATING FUNCTION \\
\hline S4 & & SWITCH, ROTARY: One section, three position; \(30^{\circ}\) positioning increments; two shorting moving contacts; ten fixed contacts; silver plated brass per QQ-B-613; nonsealed shaft per MIL-S-3786; solder type terminals on Mycalex sections. GAC part No. 000979 & \begin{tabular}{l}
FUNCTION switch. \\
Selects input to comparator \\
(Figure 3-1)
\end{tabular} \\
\hline S5 & & SWITCH, SENSITIVE: Single pole, double throw; 5 amp rating at \(125 /\) 250 vac; plastic body; 0.030 in . contact pre-travel; 0.034 in . contact overtravel; three solder type terminals; Unimax part No. T-483 & Cabinet interlock (Figure 2-10) \\
\hline TB1 & & TERMINAL BOARD: Epoxy glass lamin. 3/32 in. thick per MIL-C-18177, type GEE, GAC part No. 000958 & Provides support for component parts (Figure 5-1) \\
\hline TB2 & & TERMINAL BOARD: Epoxy glass lamin. 3/32 in. thick per MIL.C-18177, type GEE; GAC part No. 000962 & Same as TBl \\
\hline TP1 & & TEST JACK: Grayhill part No. 31 B1002 & Test point (Figure 5-2) \\
\hline TP2 & & Same as TPl & Same as TPl \\
\hline TP3 & & Same as TPl & Same as TPl \\
\hline TP4 & & Same as TPl & Same as TP1 \\
\hline TP5 & & Same as TP1 & Same as TP1 \\
\hline TP6 & & Same as TPl & Same as TPI \\
\hline TP7 & & Same as TPl & Same as TPl \\
\hline TP8 & & Same as TPl & Same as TPl \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{gathered}
\text { REF. } \\
\text { DESIG. }
\end{gathered}
\] & 0
9
\(H\)
0
0
2 & NAME AND DESCRIPTION & LOCATING FUNCTION \\
\hline T 1 & & TRANSFORMER, DISCRIMINATOR: 600 cps to 3600 cps frequency range, shield between pri and sec grounded to case; 2-1/4in. lg by \(2-1 / 16 \mathrm{in}\). w by l-3/4 in. h; GAC dwg 000970; UTC, type PA5386 & Coupling from second mark amplifier (Figure 5-1 \\
\hline T3 & & TRANSFORMER, POWER, STEPDOWN: Terminals 1 and 2,1 and 3, 1 and 4 for input voltages of \(105 \mathrm{vac}, 115 \mathrm{vac}\) and 125 vac at 47.5 cps to \(420 \mathrm{cps} ; 0.2 \mathrm{amp}\) primary; \(59 \mathrm{vrms}+3 \%\) secondary at \(0.25 \mathrm{amp} ; 2-3 / 4 \mathrm{in} . \mathrm{lg}\) by \(2-1 / 4 \mathrm{in}\). w by l-3/4in. h case; six solder stud terminals; four No. 6-32 x \(9 / 32\) in. mtg studs; internal shield between pri and sec grounded to case; GAC dwg 000970; UTC, type PA 5387 & Provides power for -48 vdc supply (Figure 5-1 \\
\hline T4 & & TRANSFORMER, POWER, STEPUP, STEP-DOWN: Input terminals 1 and 2, 1 and 3, 1 and 4 for 105 vac, 115 vac and 125 vac input voltages; 47.5 cps to 420 cps ; output terminals 5 and 6 for 59 vrms \(+3 \%\) and 85 ma ; terminals 7 and 8 for \(550 \mathrm{vac}+3 \%\) and 0.8 ma ; terminals 8 and 9 for \(6.3 \mathrm{vac}+3 \%\) and \(0.6 \mathrm{amp} ; 2-3 / 4 \mathrm{in} . \lg\) by \(2-1 / 4 \mathrm{in}\). w by \(1-3 / 4\) in \(h\) case with four \(6-32 x\) \(9 / 32 \mathrm{in}\). mtg studs; ten solder stud terminals; internal shield between pri and sec grounded to case; GAC dwg 000970; UTC & \begin{tabular}{l}
Supplies voltage for +48 vdc and -560 vdc supplies \\
(Figure 5-1)
\end{tabular} \\
\hline XDS1 & & LAM PHOLDER: Dialco; type MS90287-19 & \begin{tabular}{l}
Holder for DSl \\
(Figure 5-1)
\end{tabular} \\
\hline XFl & & \begin{tabular}{l}
FUSEHOLDER: Littlefuse part \\
No. 342025
\end{tabular} & \begin{tabular}{l}
Holder for Fl \\
(Figure 5-1)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{gathered}
\text { REF } \\
\text { DESIG. }
\end{gathered}
\] & 0
10
1
0
2 & NAME AND DESCRIPTION & LOCATING FUNCTION \\
\hline XQ1 & & SOCKET, TRANSISTOR: Three contracts; Grayhill part No.
2244-2019 & \begin{tabular}{l}
Socket for Q1 \\
(Figure 6-3)
\end{tabular} \\
\hline XV1 & & ```
SOCKET, ELECTRON TUBE: }1
pin, per MIL-S-12883; Cinch Mfg.
Co., type T-9470-12
``` & \begin{tabular}{l}
Socket for Vl \\
(Figure 5-1)
\end{tabular} \\
\hline Zl & & FILTER-TRANSFORMER NET WORK: Filter and transformer circuits contained in a single case, not interconnected; filter bandpass operating freq \(1000 \mathrm{cps} ; 6 \mathrm{db}\) bandwidth \(500 \mathrm{cps}, 40 \mathrm{db}\) bandwidth \(1400 \mathrm{cps} ; 8 \mathrm{k}\) input and output impedance at 1000 cps; a-f input transformer pri impedance 600 ohms with secondary terminated in 8000 ohm load at 1000 cps; frequency response 600 to \(3600 \mathrm{cps} ; 2-1 / 4 \mathrm{in}\). \(\lg\) by 2-1/4in. w by \(1-3 / 4 \mathrm{in}\). h ; GAC dwg 000971; UTC, type BF438 & High frequency noise attenuation bandpass filter and impedance matching transformer (Figure 5-1) \\
\hline P206 & & CONNECTOR, PLUG, ELECTRI . CAL: Two No. 16 female contacts; low loss plastic dielectric; straight shaped aluminum shell; Cannon Electric, type MS3106B14S. 95 & External cable connector for TTY OUTPUT, J6 (Figure 2-4) \\
\hline
\end{tabular}

TETPORARY CHANGE T-6 to TECFNICAL MANUAL for Comparator-Convarter Group AN/URA-17, NAVSHIPS 0967-034-9010 (FOFmerly NAVSHIPS 94028).

This Temporary Change contatrs information originsily publishod as soparate articles (Technical Manual Corroctions) in the Electronics Information Burletin, (EIB), numbers: 687.

The instructions, described herein, for makine tnese changeis slall be followed unly if they have not been previously accomplished at the time the EIB, in which the information appeared, was received.

The purpose of this Temporary Change is to assure that publications drawn from stock, subsequent to publication of this information in the EIB, can be corrected.

Insert this Temporary Change in the technical manual immediately behind the front cover and preceding the title page or preceding the latest chenge or correction in effect.

Make pen-and-ink corrections or changes to the technical manual as follows:

This correction revises the manual to reflect the use of the latest preferred test equipment.

Refer to NAVSMIPS 94028, pege 16, Table 1-3. With pen-and-ink, correct the NOMENCLATURE columas so that they agree with the following:

Oscilloscope
Electronic Multimeter
Signal Generator
Digical Readout Electronic Counter Multimeter Semiconductor Device Test Set

AN/USS-117
ME-6D/U
AN/URM-127
AN/USM-207
AN/PSM-4B
AN/USM-206

Page 5-S, paragraph 5-4⑵ (a). Correct the test equipment so that it agtees with the list above.

Page 5-9, paragraph 5-4d(2) (a). Correct the teat equipmeat'so that it agrees with the list above.

Page 6-0, paragraph 6-2c. Correct the teat equipment so that it agrees with the list above.
*

\title{
TEMPORARY CORRECTION T-7 \\ TO TECHNICAL MANUAL FOR COMPARATOR-CONVERTER GROUP
}

> AN/URA-17, AN/URA-17A

NAVSHIPS 0967-034-9010 (formerly NAVSHIPS 94028)

The ordering number for this Temporary Correction is NAVSHIPS 0967-034-9015.
This temporary correction revises the manual to reflect the equipment change made by Field Change 6-AN/URA-17 and Field Change 2-AN/URA-17A. The purpose of this field change is to replace wide-shift bandpass filter, FL1, and wide-shift discriminator filter, FL3, with filters having a center frequency of 2000 Hz .

When this change is included in the manual, the manual shall cover the equipment as though Field Change 6-AN/URA-17 or Field Change 2-AN/URA-17A had been accomplished in the equipment. This correction supersedes T-3 to NAVSHIPS 0967-034-9010.

Maintenance support activities shall make this correction in the Technical Manual immediately, but shall keep the superseded data intact for support of equipment that has not been modified.

Holders of equipment accompanied by Technical Manuals shall not make this correction in the manual until accomplishment of the field change.

Make the following pen-and-ink corrections. Insert this temporary correction in the Technical Manual immediately after the front cover and preceding \(T-6\).
1. Page 1-3, paragraph 1-5b., third line; correct 2550 to read 2000.
2. Page 3-3, paragraph 3-2g.(1)Step 6, second line; correct 2.5 to read 2.
3. Page 3-4, paragraph \(3-2 g(2)\), Step 6 , second line; correct 2.5 to read 2. Paragraph 3-3 \(\underline{a}\) (3) (a), second line; correct 2.5 to read 2.
4. Page 4-1, Figure 4-3, Discriminator Response Curve (wide-shift Discriminator, FL3); correct 2050 to read 1500, 2550 to read 2000 and 3050 to read 2500. Paragraph \(4-2 \underline{b}(1)\), eleventh 1 ine; correct 2550 to read 2000.
5. Page 4-3, paragraph \(4-2 \underline{b}(3)\), second paragraph of the page, fifth line; correct 2550 to read 2000. Sixth line; correct 3400 to read 2850. Eighth line; correct 1700 to read 1150.
6. Page 6-4, paragraph 6-3d(6) (a), Step 6; correct 2550 to read 2000.
7. Page 6-5, Table 6-2 Filter characteristics: Column, "Input Termination"; correct 2550 to read 2000. Column "OUTPUT TERMINATION"; correct 2550 to read 2000. Column "REQUIRED FREQUENCY RESPONSE"; correct 2050 to read 1500 and 3050 to read 2500. Column "INSERTION LOSS"; correct 2550 to read 2000.
8. Page 6-6, paragraph 6-3d(7) (a), Step 10 ; correct 1500 to read 950.
9. Page 6-7, Figure 6-1, Discriminator Frequency Response Curves "WIDE SHIFT"; correct as indicated.
"PEARS" -1.15 vice 1.7 and 2.85 vice 3.4 "SUM OF ABSOLUTE VOLTAGES"1.65 vice 2.2 and 2.35 vice 2.9 .
"MINIMUM VOLTAGE CHANGE" - 1.65 vice 2.2 and 2.35 vice 2.9 .
"CENTER FREQUENCY" - 2.00 vice 2.55. Correct scale as indicated: 1.25 vice \(1.8,1.65\) vice \(2.2,2.05\) vice \(2.6,2.45\) vice \(3 ; 2.85\) vice 3.4 .
10. Page 6-9, paragraph 6-3d(7)(a), Step 11 , second line; correct 3700 to read 3150. Step 13; correct 2200 to read 1650; correct 2900 to read 2350; correct 2500 to read 1950; correct 2600 to read 2050; correct 1700 to read 1150 and correct 3400 to read 2850.
11. Page 7-7, "MAINTENANCE PARTS LIST", REF DESIG FLl, under column, "NAME AND DESCRIPTION", correct 2550 where appearing to read 2000 and delete all after 1-3/4 in. W. REF DESIG FL3, under column "NAME AND DESCRIPTION"; correct 1700 to read 1150; correct 3400 to read 2850; correct 2500 to read 2000 and delete all after \(1-1 / 2\) in. W.

Record this action on the Record of Corrections Made page.

\section*{8}

UNCIASSIFIED
T- 8_NAVSHIPS 0967-034-9016 Date l AUGUST 1974
INTERIM CHANGE T- 8 TO NAVSHIPS 0967-034-9010
Technical Manual dated 7 April 1971 for Converter-
Comparator AN/URA-17, AN/URA-17A, and AN/URA-I7B.

\section*{区納HIS CHANGE DOES NOT SUPERSEDE ANY OTHER CHANGE. \(\square\) THIS CHANGE SUPERSEDES} \(-\)

This Interim Change revises the manual to reflect the equipment changes made by Field Change(s) 8-AN/URA-17, 4-AN/URA-17A, 2-AN/URA-17B, and \(2-A N / U R A-1 \overline{7 C}\) EFCB NAVSHIPS 0967-034-9130 dated 1 Auqust 1974.

\section*{This Interim Change originally published in EIB 835}

Maintenance Support Activities shall make this change immediately but shall keep the superseded data intact for support of equipments that have not been modified.

Holders of equipment shall not make this change in the manual until accomplishment of the field change referenced above.

Insert this Interim Change in the manual immediately after the front cover and preceding prior changes in effect.

Make pen-and-ink changes as follows:
1. Page 4-5, paragraph 4-2C(4):
(1) Line 13--change "deliver a strong positive" to read "deliver a positivo 6 volt."
(2) Line 18--change "delivers a strong negative" to read "delivers a negative 6 volts."
(3) Last line--after word "keyer" add "for High Level systems or provides a \(\pm 6\) volt polar signal for Low Level systens."
2. Refer to figure 1 of this article and make the following changes to page 5-11, 5-12 figure 5-6 and page 6-25, 6-16 figure 6-5:
(1) Delete "R60" and "220." Change the resistor symbol to show a zener diode with the anode ( + ) side connecting to the junction of R59 and Q16. Label this diode "CR35". "1N3828A."
(2) Delete the circuit symbol number "R61" and the value "220." Change the resistor symbol to show a zener dio'de with anode ( + ) side connectiag to the Junction of 263 and ground. Iabel this diode "CR36", "1N3828A."
(3) Add the symbol for a capacitor between the collector of Q16 and ground. Iabal this capitor "C33, 2.5."
(4) Add wte between collector of Q14 and J1-8.
(5) Delece the symbol, symbol number and value for resistors R65 and R67.
(6) At the top of page above Q13. waveforn \(C\), change " \(+3.2 V\) " to read \(\pm 6.2 \mathrm{~V}\)."
(7) On the bottom of the pare following the word Dlagram add "for Low Level Polar Output."
3. Page 6-15, 6-16, Table of coordinates:
(1) Under Reference Designation after C32 add "C33"; opposite C33 under coordinates add "13C."
(2) Under Reference Desigaation after CR34 add "CR35" and "CR36." Opposite CR35 and CR36 under coordinates add "12B."
4. Page 6-11, 6-12; figure 6-3:
(1) Change R60 to show a diode with the ( + ) side connected to R59. Label this diode "CR35." Delete circuit symbol number "R60."
(2) Change R61 to show a diode with the \((+)\) aide connected to terminal 43. Label this diode "CR36." Delete circuit symbol number "R61."
(3) Show a capacitor between the right terminal of R65 and the \((4)\) side of CR22. Label this capacitor "C33."
(4) Show a wire connecting TB2 terminal 50 and the right teminal of R65.
(5) Delete resistors R65 and R67.

UNCLASSIFIED
Page 1 (of 3)

T- \(\qquad\) 8 - NAVSHIPS 0967-034-9016


NOTES:
1. UNLESS OLIERWISE SPECIFIED:

ALL CAPACITORS ARE IN UF
ALL RESISTORS ARE IK CRMS
ALL RESISTORS 1/2 WATT 10\%
\(K=1000\) MRG \(=1,000,000\)
2. C31A, C31B IN SAMB CASE. C27A, C27B IN SANP CASE.
3. UNLESS OTHERWISE INDICATED ALL VOLTAGES TAKEN TO CBASSIS WITH 20,000 OHM/VOLT VOLTMETER, WITH NO INPUT SICNAZ.
4. EXCEPT FOR POWER TRANSFORMER VOLTAGES, ALL VOLTAGES ARE DC.
5. \(£\) zENER DIODE.
6. ALL ROTARY SWITCHES SHOWN IN FULLY CCW POSITIONS UNLESS OTHERWISE SPECIFIED.
7. \(\square\) INDICATES FRONT PANEL CONTIROL.
8. ARROWS ON VARIABLE RESISTORS INDICATE CLOGRWISE ROTATION.

Frgare 1. Frequency Shift Convonter CV-483C/URA.17. Keyer Circuits, FunctionsA Schematic Diagram for Low Level Polar Output
\(\qquad\) , NAVSHIPS 0967-034-9016
Date 1 AUGUST 1974
5. Page 7-4, Table 7-1:
(1) Under Reforence Dealgation efter CR34 add "CR35."
(2) Opposite CR35 under Neme and

Deecription add "Diode, zener, type ]N3828A." Uador Loceting Function add "DC Limiter Low Level Output."
(3) Dnder Reference Dealgaation
after CR35 add "CR36." Oppo日ite CR36 under Name and Description add "Seme as CR35." Under Locatiing Function add "DC Limiter Low Lavel Output."
6. Page 7-6, Table 7-1:
(1) Under Reference Deaigaation after C32 add "C33."
(2) Opposite C 33 under Name and Description add "Capacitor, 2.5 uf 50 volte Type CL27BJ2R5TN2." Under Locating Function add "Filter for Low Level Output."
7. Page 7-14, Table 7-1:
(1) Delete "R60" and "R61" and
their asaociated Description and Locating Function.
(2) Delete "R65" and ita Descrip-
tion and Locating Function.
8. Page 7-15, Table 7-1:
(1) Delete "B67" and its Description and Locating Function.
9. Page 1-8, Table 1-6;
(1) Add es ibiola "CR35" and "CR36."
(2) Add colun for diode type "3N3828A."
(3) Oppooite CR35 under 1N3828A add
"1."
(4) Opposite CR36 under 1N3828A add
"1."
(5) Opposite total number each type wader JN3828A add "2."
(6) Under total colum change 34 to read "36."```

