INSTRUCTION BOOK

MODEL TCP-2
TRANSMITTING - RECEIVING RADIOTELEPHONE EQUIPMENT

TYPE OF EMISSION
Telephone (A3)

32 VOLTS D.C. SUPPLY
CRM-43009-A
CRM-53085
CRM-51026
CRM-23230

NOMINAL POWER OUTPUT 75 Watts Phone (A3)

TRANSMITTER-RECEIVER LINE FILTER UNIT HAND TELEPHONE ASSEMBLY REMOTE CONTROL UNIT

FREQUENCY RANGE 2000 to 3000 Kcs.

115 VOLTS D.C. SUPPLY CRM-43010-A CRM-53086 CRM-51026 CRM-23230

Manufactured for U.S. Navy Department, Bureau of Ships
By

RADIOMARINE CORPORATION OF AMERICA

75 VARICK STREET, NEW YORK, N. Y.

Contract NXsR-36947 dated September 6, 1943

WARNING

PEKSONNEL ENGAGED IN THE INSTALLATION, OPERATION AND MAINTENANCE OF THIS EQUIPMENT OR SIRILAR EQUIPMENT ARE URGED TO. BECOME FAMILIAR WITH THE FOLLOWING RULES BOTH IN THEORY AND IN THE PRACTICAL APPLICATION THEREOF. IT IS THE DUTY OF EVERY RADIOMAN TO BE PFEPARED TO GIVE ADEQUATE FIRST AID AND THEREBY PREVENT AVOIDABLE LOSS OF LIFE. YOUR OWN LIFE MAY DEPEND ON THIS.

ELECTRIC SHOCK

First-Aid Treatment

Safety First: Regard electrical apparetus generally, and especially all current-carrying parts, as dangerous, irrespective of voltage. Exercise great care in handing, and avoid broad contacts such as are made by standing on a metal deck or in water.

Dangerous contact may result through lessened resistance when the skin and clothing are wet with perspiration. Contact with damp metal surfaces--decks, bulkheads, guns, machinery--may allow the current to ground through the moist skin and body.

Electric shock is due to current passing through the body--current actually passing--irrespective of the voltage. A pressure as low as 110 volts has caused death. Current passing through the body in the region of the heart is especially dangerous. In using electric breast drills avoid the possibility of a ground.

Usually electric shock does not kill instantly. Life can often be saved even though breathing has stopped.

Free the Victim from the Circuit Immediately. Use a dry nonconductor (rubber gloves, clothing, rope, board) to move either the victim or the wire. Beware of using metal or moist material.

Shut off the Current. If necessary to cut a live wire, use an ax or hatchet with a dry wooden handle; turn your face away from the electrical flash.

Attend Instantly to the Victim's Breathing. Begin resuscitation at once on the spot. עo not stop te loosen clothing; every moment counts. Feel with your finger in his mouth and throat for foreign bodies--tobacco, false teeth, etc.--and remove them. If the mouth is tightly shut, pay no attention to it until later. RESUSCITATION BY THE PRONE PRESSURE METHOD OF ARTIFICIAL RESPIRATION

Electric Shock

Waste No Time. Lay the victim on his belly with one arm extended overhead, the other bent at the elbow; face turned to the side and resting on the forearm so that the mouth and nose are free for oreathing. See Position 1.

Position 1 - Kneel, straddling the patient's hips with your knees just below his hip bones. Place your hands on the small of the back. Fingers extended over the lower ribs. Little finger over the last rib. Finger tips just out of your sight on the sides of the chest.

First Movement: - Make pressure while deliberately counting one--two-three, as follows:

With arms straight, bring your weight to bear upon the patient gradually and heavily but not violently. Swing forward slowly. This movement should take three seconds.

Second Movement: - Release the pressure suddenly by swinging back quickly to the position indicated in Position l. Fest while deliverately counting one-two.

In performing this movement one does not actually remove the hands from the patient.

Repeat these movements from twelve to fifteen times a minute; pressure three seconds; rest two seconds; complete respiration, five seconds-never less than four seconds.

Continue resuscitation movements without interruption for four hours, or until a medical officer has declared further efforts futile, unless natural breathing is restored. If natural breathing stops after temporary restoration, resume artificial respiretion at once.

Keep the patient warm. Give him fresh air. Without interrupting resuscitation movements have some one else loosen his clothing about the neck, chest, and waist.

Do not attempt to give any liquid by mouth. Ammonia may be placed near the patient's nose after determining how close it may be brought to somebody else's nose without causing irritation.

Some one should smartly tap the patient's shoe heels with a stick or hatchet handle, fifteen or twenty times, every five minutes until respiration has been restored.

Watch carefully for signs indicating the return of natural breathing. V_{0} not block feeble respiratory efforts. Time your movements so that pressure is exerted only while the patient is breathing out. Release pressure instantly when he begins to breathe in.

If the patient revives do not allow him to get up or to be raised for any purpose. Keep him prone until a medical officer arrives.

THE PRONE PRESSURE METHOD OF ARTIFICIAL RESPIRATION SHOULD BE APPLIED BY ONE WHO HAS PRACTICED ON A VOLUNTEER SUBJECT.

SAFETY PRECAUTIONS

WERNING

OPERATION OF THIS EQUIPMENT INVOLVES THE USE OF HIGH VOLTAGES WHICR ARE DANGEROUS TO LIFE. OPERATING PERSONNEL MUST AT ALL TIMES OBSERVE ALL SAFETY REGULATIONS. DO NOT CHANGE TUBES OR MAKE ADJUSTMENTS INSIDE EQUIPMENT WITH HIGH VOLTAGE SUPPLY ON. DO NOT DEPEND UPON DOOR SWITCHES OR INTERLOCKS FOR PROTECTION BUT ALWAYS SHUT DOWN MOTOR GENERATORS OR OTHER ASSOCIATED POWER EGUIPMENT AND OPEN MAIN SFITCH IN PORER SUPPLY CIFCUIT. UNDER CERTAIN CONDITIONS DANGEROUS POTENTIALS MAY EXIST IN CIRCUITS WITH POWER CONTROLS IN THE OFF POSITION DUE TO CHARGES RETAINED BY CAPACITORS, ETC. TO AVOID CASUALTIES ALFAYS DISCHARGE AND GROUND CIRCUITS PRIOR TO TOUCHING THEM.

Since the use of high volteges which ere dangerous to human life is necessary to the successful operation of the radio transmitting equipment covered by these instructions, certain reasonable precautionary measures must be carefully observed by the operating personnel during the adjustment and operation of the equipment.

While every practicable safety precaution has been incorporated in this equipment, the following rules must be strictly observed:

KEEP AKAY FROM LIVE CIBCUITS. Under no circumstances should any person be permitted to reach within or in any manner gain access to the enclosure with interlocked gates or doors closed or with power supply line switches to the equipment closed; or to approach or handle any portion of the equipment which is supplied with power, or to connect any apparatus external to the enclosure to cirouits within the equipment; or to apply volteges to the equipment for testing purposes while any non-interlocked portion of the shielding or enclosure is removed or open. Wherever feasible in testing circuits, check for continuity and resistance rather than directly checking voltage at various points.

DON'T SERVICE OR ADJUST ALONE. Under no circumstances should any person reach within or enter the enclosure for the purpose of servicing or adjusting the equipment without the immedicte presence of another person capable of rendering aid.

The equipment including all parts and spare parts, oxcopt vacuum tubes, batteries, rubber and material normally consumed in operation, is guaranteed for a period of one year from the date of delivery of the equipment to and acceptance by the Government with the understanding that all such items found to be defective as to material, workmanship or $\#$ Ianufacture will be repaired or replaced, f.o.b. any point within the continental limits of the Uniter States designated by the Government, without delay and at no expense to the Government; provided that such guarantee will not obligate the Contractor to make repair or replacement of any such defective items unless the defect appears within the aforementioned period and the dontractor is notified thereof in writing within a reasonable time and the aefect is not the result of normal expected shelf life deterioration.

To the extent the equipment, including all parts and spare parts, as defined above, is of the Contractor's design or is of a design selected by the Contractor, it is also guaranteed, subject to the foregoing conditions, against defects in design with the understanding that if ten percent (10%) or more of any such said itam, but not less than two of any such item, of the total quantity comprising such item furnished under the contract, are found to be defective as to design, such item will be conciusively presumed to be of defective design and subject to one hundred percent (100\%) correction or replacement by a suitably redesigned item.

All such defective items will be subject to ultimate return to the Contractor. In view of the fact that normal activities of the Naval Service may result in the use of equipment in such remote portions of the world or under such conditions as to preclude the retum of the defective items for repair or replacement without jeopardizing the integrity of Naval communications, the exigencies of the Service, therefore, may necessitate expeditious repair of such items in order to prevent extended interruption of communications. In such cases the return of the defective items for examination by the Contractor prior to repair or replacement will not be mandatory. The report of a responsible authority, including details of the conditions surrounding the failure, will be acceptable as a basis for affecting expeditious adjustment under the provisions of this contractual guarantee.

The above one year period will not include any portion of time the equipment fails to perform satisfactorily due to any such defects, and any items repaired or replaced by the Contractor will be guaranteed anew under this provision.

PERTINENT DATES AFFECTING REPLACEMENTS UNDER THE GUARANTEE

Contract No.
Date of Contract
Serial Number of Equipment
Date of Acceptance by the Navy
Date of Delivery to Contract Destination
Date of Completion of Installation
Date Placed In Service
Blank spaces in the book shall be filled in at time of installation. Operating personnel shall also mark the "Date Placed In Service" on the date plate located below the nodel nameplate on the equipment.

REPORT OF FAILURE

Report of failure of any part of this equipment, during its service life, shall be made to the Bureau of Engineering in accordance with current instructions. The report shall cover all details of the failure and give the date of installation of the equipment. Refer to latest revision of Bureau of Engineering Circular Letter No. 40 for instructions concerning Report of Failures, etc.

ATTENTION

THE ATTENTION OF ENGINEER OFFICERS, RADIO OFFICERS AND OPERATING PERSONNEL IS DIRECTED TO BUREAU OF ENGINEERING CIRCULER LETTER NO. 5a of 3 OCTOBER 1934, OR SUBSEQUENT REVISIONS THEREOF ON THE SUBJECT OF "RADIO - SAFETY PRECAUTIONS TO BE OBSERVED".

MODEL TCP-2
TRANSMITTING - RECEIVING RADIOTELEPHONE EQUIPMENT

TYPE OF EMISSION
NOMINAL POWER OUTPUT
FREQUENCI RANGE
Telephone (A3)
75 Watts Phone (A3)
2000 to 3000 Kcs .

32 VOLTS D.C. SUPPLY

$$
\begin{aligned}
& \text { CRM-43009-A } \\
& \text { CRM-53085 } \\
& \text { CRM-51026 } \\
& \text { CRM-23230 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { TRANSMITTER-RECEIVER } \\
& \text { LINE FILTER UNIT } \\
& \text { HAND TELEPHONE ASSEMBLY } \\
& \text { REMOTE CONTROL UNIT }
\end{aligned}
$$

115 VOLTS D.C. SUPPLY

$$
\begin{aligned}
& \text { CRM }-43010-A \\
& \text { CRM-53086 } \\
& \text { CRM-51026 } \\
& \text { CRM-23230 }
\end{aligned}
$$

Manufactured for U.S.Nevy Department, Bureau of Ships

$$
\begin{gathered}
\text { - By - } \\
\text { RADIOMARINE CORPORATION OF AMERICA } \\
75 \text { Varick Street, New York, N.Y. }
\end{gathered}
$$

Contract NXsR-36947 dated September 6, 1943

This instruction book is furnished for the information of commissioned, warrent, enlisted and civilian personnel of the Navy whose duties involve design, instruction, operation and installation of radio and sound equipment. The word "RESTRICTED" as applied to this instruction book signifies that this instruction book is to be read only by the above personnel, and that the contents of it should not be made known to persons not connected with the Nevy.

Page

1 - General Description 1
2 - Condensed Operating Instructions. 6
3 - Additional Operating Instructions 7
4 - Transmitter Circuits 8
5 - Receiver Circuits. 13
6 - Installation 15
7 - Antenna and Ground System 16
8 - Transmitter Adjustments 17
9 - Receiver Adjustments 19
10 - Maintenance 21
11 - Machine Maintenance 23
12 - Winding Data 25
13 - Vacuum Tubes 28
14 - Coastal Harbor Stations and Crystal List 32
15 - Power Conversion Kit 33
TABLES
(In Back of Book)
I - List of Major Units (l sheet)II - Parts List by Symbol Designation (ll sheets)III - Parts List by Symbol Designation (6 sheets)(To show which items are identical)IV - Spare Parts List by Symbol Designation (5 sheets)
V - Applicable Color Code (l sheet)
VI - List of Manufacturers. (1.sheet)
DRAWINGS AND CHARTE
KS-63 - Crystel Holảer, Types Rl and R2.K-145 - TransformersK-147-P. A. Coil Turns Vs FrequencyKS-12 - CRM-43009-A and CRM-43010-A Transmitter- ReceiverKS-13 - CRM-23230 Remote Control Unit
KS-14 - CRM-51026 Hand Telephone Assembly
KS-15 - CRM-53085 and CRM-53086 Line Filter UnitT-1209- Receiver Circuits and External ConnectionsT-l210- Transmitter and Power Circuits
ILLUSTRATIONS
Fig. 1 - TCP-2 Front View Assembly
2 - TCP-2 Top View (Cover Removed)
3 - TCP-2 Right Side (Cover Removed)
4 - TCP-2 Left Side (Cover Removed)
5 - TCP-2 Kadio Receiver Top View
6 - TCP-2 Radio Receiver Bottom View
7 - Transmitter Underside View
8 - TCP-2 Line Filter Unit 10 Rerote Controi Onit

$$
\begin{aligned}
& \text { TCP-2 } \\
& \text { Page } 1
\end{aligned}
$$

INSTRUCTION BOOK

MODEL TCP-2
TRANSMITTING - RECEIVING RADIOTELEPHONE EQUIPMENT

1- GENERAL DESCRIPTION

1.1-Application: The model TCP-2 radiotelephone equipment comprises a compact medium power radiotelephone transmitter and receiver, designed for installation aboard vessels of the United States Navy. Radio personnel are urged to study carefully the instructions contained in this book so that the equipment may be installed, adjusted, operated and maintained for maximum performance.
1.2-Component Units: The component units furnished for each installation normally comprise the following items:

1 Transmitter Receiver Unit (CRM-43009-A for 32 volt D.C.) or (CRM-43010-A for 215 Volt D.C.)

1 Line Filter Unit (ERM-53086 for 115 volt D.C.) or (CRM-53085 for 32 volt D.C.)

1 Hand Telephone Assembly (CRM-51026)
1 Remote Control Unit (CRM-23230)
160 Ft. Length 7 conductor Remote Control Cable
1 Set of Vacuum Tubes Comprising: (18 Total)

$5-807$	$2-809$
$3-6 A 6$	$4=6 L 7$
$1-6 C 5$	$1=6 R 7$
$1-6 \nabla 6$	$1=5 W 4$

1 Set of Type Rl Transmitter Crystals)

1 Set of Type Rl Receiver Crystals .)

As Called For By Contract.

1 Metal Spare Parts Box per Navy Specs 42-B-9 (INT)
1 Set of Spare Tubes and Spare Parts
(See Table No. IV in this book)
2 Instruction Books
1.3-Power Output: The radio transmitter is designed to deliver 75 watts of carrier power into a typical 16 ohm, 200 mmfd . antenna. The modulation capability is substantially 100 percent.
1.4-Frequency Range: The transmitter and receiver are designed to cover the frequency range of 2000 to $3000 \mathrm{~K} . \mathrm{C}$. There is provision for the use of a maximum of ten frequencies within this band. The exact number of frequencies supplied on a particular order are as specified on that order.
1.5-Frequency Control: Type Rl transmitter and receiver Quartz crystals are used in the equipment. Crystals are of the plug-in type with .850 inch pin spacing. A crystal jack board marked "T" provides mounting for ten transmitter crystals, and a similar jack board marked "R" provides mounting for ten receiver crystals. Crystals are of the low temperature coefficient type (approximately 3 cycles per M.C. per degree C), and are ground for an operating tolerance of plus or minus .04 percent. Transmitter crystals are ground directly for the desired transmitting frequency, that is, the frequency on the nameplate is the same as the output frequency. In the case of receiver crystals, such crystals are ground for a frequency $455 \mathrm{~K} . \mathrm{C}$. higher or lower than the frequency of the signal to be received. Under present frequency assignments, the frequency of receiver crystals always end with an "odd" digit, such as 1, 3, 5, 7 or 9. To identify a receiver crystal, so that it may be paired up with the corresponding transmitter cyrstal, add or subtract the number 455 from the frequency on the receiver crystal nameplate. Either the sum or the difference will then equal the frequency of the signal to be received. When the equipment is used for communication with U. S. Coastal Harbor Stations, which transmit and receive on different frequencies, refer to the list in this book for such Coastal Harbor Stations to determine the correct transmitter and receiver crystal frequencies.
1.6 - Remote Control Unit: The remote control unit is used when it is desired to operate the equipment from a remote point after the desired frequency has been selected at the transmitter-receiver unit. The remote control unit may, therefore, be considered as an accessory, as it is not required when the equipment is to be operated directly from the transmitter-receiver unit. Two 7 conductor cables are needed to the remote unit to provide a total of 14 conductors.
1.7-Selective Ringer: The radiotelephone equipment is designed so that, at a future date, a suitable type of selective ringer may be added. The purpose of this selective ringer is to enable a local Coastal Harbor Station to ring a bell aboard the ship on which the radiotelephone equipment is installed.
1.8_-Vacuum Tubes: The radio transmitter employs ten vacuum tubes as follows:

1-807 Crystal Control Oscillator
4 - 807 Power Amplifiers
2 - 809 Modulators
1-6A6 Driver Audio Amplifier
1 - 6A6 Microphone Audio Amplifier
1 - 6A6 Vodas Audio Rectifier

The radio receiver employs eight vacuum tubes as follows:

A socket for an additional 6C5 "ringer audio amplifier" tube is provided in the receiver for special installations which are furnished with an automatic bell ringing device.
$1.9=$ Transmitter-Receiver Unit Construction: Refer to KS-l2 and the photographs in this book. The overall mechanical assembly is constructed with an aluminum frame with removable front, sice, rear and top panels. The receiver unit itself is constructed on a separate chassis and arranged so that the receiver chassis and its front panel may be conveniently removed from the front of the cabinet. Four heavy duty rubber shock mounts are fastened to the base of the unit, and an additional rear bracket is furnished to brace the unit egainst an adjoining bulkhead.
1.10 $=$ Transmitter-Receiver Unit Panel Controls: Two meters are provided in the upper section of the front panel, one of which reads antenna current and the other various tube currents as determined by the "current" switch beneath that meter.
(a) The antenna circuit is tuned by means of a continuously variable rotating coil which is adjusted by means of the control between the two meters.
(b) A "Trans" ten position switch mounted below the antenna ammetcr is used to adjust the oscillator and power amplifier circuits of the radio transmitter to the desired transmitting irequency.
(c) A "Press-Telk - Autometic" switch is provided to control certain circuit functions as described further in this book. A small green pilot light "Transmitter On" is illuminated when the handset is removed from its support.
(d) The "Off-On" toggle switch on the front panel is used to turn the radio receiver off or on, and in the "On" position also permits the redio transmitter to be used whenever the handset is removed from its support.
(e) The various controls for the radio receiver are mounted in the center section of the front panel. A built-in loud speaker is provided. Beneath the loud speaker, a red pilot light indicotes when the receiver has been turned on. The redio receiver mey be set to any one of the pre-tuned frequencies for which it has been adjusted by means of the ten position "Recr" switch. Beneath the red "Receiver On" pilot light, there is mounted a toggle type nVolume Sritch" which permits control of receiver volume (sensitivity) at either a local or remote position. To the left of this switch is mounted a local receiver "Volume Control".
(f) Frequency marker plates are mounted on the front panel, with provision for a meximum of ten plates, to indicate the positions to which the trensmitter and receiver switches should be placed for the various frequencies. "Blank" plates are used for switch positions not provided with crystals.
(g) Access to the main terminal board, fuses, and the automatic starter for the transmitter motor generator unit, is obtained by removing the lower front panel section which is provided with thumb screws. Access to the radio receiver is accomplished by removing the screws of the receiver panel section and withdrawing the receiver chassis.
(h) A "Spkr-Hendset" switch is provided so that either the loud speaker or the telephone receiver in the handset may be used for reception when operating under "PressTalk" conditions. This "Spkr-Handset" switch must not be left in the speaker position when "automatic" operation is in use.

1. 11 - Line Filter Unit: The line filter unit is a small external assembly mounted in a metal container for connection between the ship's power source and the transmitterreceiver unit. This unit, which contains radio frequency filters, a toggle type line switch and a fuse, is designed for installation near the transmitter-receiver unit and connects to that unit by means of the rubber covered, $h \in a v y$ duty, cable which is a part of the transmitter-receiver unit. Refer to drawing KS-15 and photograph in this book.
1.12 - Hand Telephone Assembly: The hand telephone assembly consists of a "Press-to-Talk" type of handset and a switch hook unit for supporting the handset. This assembly may be installed near the transmitter-receiver unit so that the user may manipulate the "Press-to-Talk" button on the handset as well as the various controls on the transmitterreceiver unit. A special rubber clamping device is provided on the hand telephone assembly so that the handset remains securely in place when not in use. Refer to drawing KS-14 and photograph in this book.
1.13-Remote Control Unit: The eemote control unit is designed for installation in any convenient location. Tais control unit includes a handset, loud speaker, volume control, and a "Volume Switch". When this unit is used, it provides means for receiving calls or placing calls from the remote point. Installation of a remote control unit does not prevent "local" operation of the set, since it is only necessary to place the "Volume Switch" on the transmitterreceiver unit in the correct position when local operation is desired. When the remote control unit is used, it is, of course, necessary to place the transmitter-receiver switches in the correct positions and to turn on the radio receiver at the transmitter-receiver unit and also to adjust the antenna tuning control. Provision is made in the remote control unit for future installation of a bell for special installations where an automatic ringing device is added to the radio receiver in the transmitter-receiver unit. See drawing KS-l3 and photograph in this book.
1.14-Power Supnly: Model TCP-2 is designed to operate from a power supply of 32 volts D.C., or 115 volts D.C. as specified. It is necessary, of course, to use CRM-43009-A transmitter-receiver and CRM-53085 line filter unit for 32 volts D.C. supply, or CRM-43010-A transmitterreceiver and CRM-53086 line filter unit for 115 volts D.C. supply. The transmitter-receiver unit contains two rotating machines, one a rotary converter for the radio receiver and the other a motor generator for the radio transmitter.
1.15 - The power supply recuirements for the equipment are approximately as follons:

Supply Voltage Receiver"On" Two Way Communication

32 V - D.C. (Stendby)

Receiving Transmitting
$32 \mathrm{~V}-\mathrm{D.C}$.
$115 \mathrm{~V}-\mathrm{D} . \mathrm{C}$.
5.2 Amps

18
26
1.4 Amps
means handset off support
Two way communication (receiving) means handset (transmitting) means handset off support and push button closed to talk.
1.16 - Data on Converter and Motor Generetor:

Receiver Rotary Converter

Input
31 V - 5.2 Amps D.C. 110 V - . 505 Amp 60 Cycle
110 V - 1.4 Amps D.C. 110 V - . 605 Amp 60 ©

Converter is a 3600 RPM, ball bearing, enclosed machine, continuous duty, 40 degrees C rise, and has a built-in R.F. filter unit mounted underneath machine. Overall dimensions are lo inches long, 9 inches high and 6 inches deep. Veight is 25 pounds.

TCP-2
Page 6

Transmitter Motor Generator

Input

Output
550 V - . 5 Amp D.C.
22 V - 4.55 Amps 60 Cycle
550 V - 15 Amp D.C.
78 V - 1.28 Amps 60 Cycle

Type
31 V - 20 Amps D.C.
110 V - 5.5 Amps D.C.

8012-B SS-2049
8012-B SS-2048

Motor generator is a 3600 RPM, ball bearing, enclosed machine, continuous duty, 50 degrees C rise. Overall dimensions are 17-1/2 inches long, $8-3 / 4$ inches high and $10-1 / 2$ inches deep. Weight is 82 pounds.
1.17-Dimensions and Feights: CRM-43009-A or CRM-43010-A transmitter-receiver unit - 37 n high, 20-1/8" wide and $22^{\prime \prime}$ deep. Weight is 310 pounds.

CRM-53085 or CRM-53086 line filter unit - 10-9/16n high, 9-3/8" wide and $3-5 / 8{ }^{\prime \prime}$ deep. Weight is 9 pounds.

CRM-51026 hand telephone assembly - 9" high, 3-1/2" wide and 6-1/4" deep. Weight is 4 pounds.

CRM-23230 remote control unit - 10-1/4" high, 13-5/8" wide and 5-3/8n deep. Weight is ll pounds. (Dimensions include handset in position on control unit).

2 - CONDENSED OPERATING INSTRUCTIONS

2.1 - A small instruction cerd 5-3/8" by 8-3/8" furnished with each equipment should be posted near the transmitter-receiver unit for use by operating personnel. This card contains the following instructions:

1. Place "Trans" and "Recr" switches in the correct positions for the desired frequency. Adjust P. A. Tuning to setting indicated on calibration chart. Place "Handset" switch in the "Press-Talk" position. Place "Spkr-Handset" switch in "Spkr" position.
2. To Receive Calls: Turn "Offonn" switch to "On". "Receiver On" red light will glow. Adjust "Volume Control" clockwise to as high a value as possible. Incoming calls or atmospheric noise will be heard from loud speaker.
3. To Place Calls: Remove handset from support. "Transmitter On" green light will glow. Allow 15 seconds for tubes to warm up. Make sure P. A. Tuning is adjusted to correct setting. Press the button in the center of the handset and rotate antenna tuning control for maximum antenna current. While calling or talking, keep button depressed. Release button to hear the other party. Adjust "Volumen to desired value.
4. Important: After completing two way conversation, replace handset on support and readjust "Volume Control" to a high enough value so that the next incoming call will be clearly heard.
5. Use of Remote Control Unit: Installations with a CRM-23230 Remote Control Unit require suitable adjustment of the "Volume Switch". This switch trensfers the Volume Control circuits. To use the Remote Control Unit, place this "Volume" switch either to the right or left, the correct position being the one which permits the Volume Control Knob to regulate the sound from the loud speaker. If set is to be used "locally", follow same procedure with "Volume Switch" on transmitter-receiver unit.
6. To shut down set completely, turn off panel "OffOn" switch and note that red light is extinguished.
7. When "Press-Talk" operation only is used, "SpkrHandset" switch may be placed in either position, as required.

3 - ADDITIONAL OPERATING INSTRUCTIONS

3.1 - The "Trans" switch for the radio transmitter, simultaneously selects the appropriate transmitter circuits and transmitter crystal for the desired transmitting frequency. The "P. A. Tuning" control is the small knob mounted directly above the "Off-On" switch. This "P. A. Tuning" control should always be carefully adjusted to the calibrated setting as recorded in the small frame on the panel. If the correct setting is not known, it may be quickly determined by adjusting the knob for minimum P. A. cathode current as read on the plate current meter with the current switch in position 3, and with no antenna current. After this is done, the antenna circuit may be resonated for maximum antenna current.
3.2 - Under special conditions "cross channel" operation using "Navy" frequencies may be carried on with other vessels that are similarly equipped with model TCP-1 or TCP-2 radiotelephones. In other words, since there are separate trensmitter and receiver switches, it is possible to transmit on one frequency and receive on a different frequency, provided both parties make suiteble errangements. "Cross Channel" operation, however, cannot be carried on with coastal harbor stations, since a definite tronsmitting frequency and a definite receiving frequency must be used with each herbor station.
3.3 - Familiarity should be acquired with the adjustment of the antenna tuning control marked ${ }^{\text {adjust for maximum }}$ antenna current". Whenever the trensmitting frequency is changed, this control should always be readjusted for maximum antenna current. When changing to a higher frequency from the one previously in use, the knob should be rotated counterclockwise. If a lower frequency is selected, the knob should
be rotated clockwise. The "current" switch beneath the plate current meter should always be left in position 3. The other positions of this switch are for use in service and maintenance. TCP-2 equipment has Veeder-Root counter to assist in adjusting antenna tuning control. When all of the turns of the coil are in use (maximum inductance), the counter will read 1445. With the turns all out of circuit (minimum inductance), the counter will read l000. In any case, however, it is recommended that the antenna tuning control be adjusted for maximum antenna current instead of depending upon a calibration record made with the Veeder-Root counter.
3.4 - The function of the handset switch should be understood. In the "Press-Talk" position, the incoming signal may be heard in the loud speaker or the telephone receiver in the handset, depending on the position of the "Spkr-Handset" switch. If the handset switch is placed in the "atomatic" position, the transmitter will go "on the air" each time speech is impressed on the microphone, and, under these conditions, loud speaker reception cannot be used as feedback will occur from the loud speaker to the microphone and prevent satisfactory operation. When "Automatic" transmission is used, it is important to speak steadily and clearly into the microphone, as, otherwise, "clipping" may occur resulting in the party at the other end of the circuit having difficulty in understanding your conversation. "Automatic" operation is undesirable under conditions of local noise aboard ship since any sound impressed on the microphone will actuate the transmitter whether or not you are talking.

4 - TRANSMITTER CIRCUITS

4.1 - Refer to draning T-1210. The crystal controlled oscillator in the transmitter uses a type 807 tube (93). The control grid of this tube is connected to one of the sections of the ganged ten position frequency switch (39) so that the appropriete crystal moy be selected. A choke coil (34) is connected in series with the cathode of the 807 oscillator tube to provide a small amount of regeneration or feedback for the crystal oscilletor. The output circuit of the crystal oscillator consists of radio frequency transformer (26) which has its primary or plate winding tuned by capacitor (30) and its secondard tuned by capacitor (25). Variable coupling is provided betreen the primary and secondary of radio frequency transformer (26). The coupling of the radio frequency transformer and the tuning of the primary and secondary windings are adjusted by the factory and locked, so that the crystal oscillator circuit functions automatically throughout the 2000 to 3000 K.C. band of the transmitter. Two resistors (23) connected in parallel are used to load the secondary of the radio frequency transformer. The screen grid of the 807 oscillator tube receives its supply voltage through resistors (29) and is by-passed to ground through capacitor (32.)

Capacitor (31) by-passes the D.C. end of the primary of the radio frequency transformer. The capacitors (35 and 36) are used as radio frequency voltage dividers for the excitation of the oscillator control grid. The oscillator plate receives its D.C. voltage from the 550 volt output of the motor generator while the screen is supplied from the same source through resistors (29). Resistor (33) functions as a bleeder for resistors (29).
4.2 - The power amplifier circuit uses four 807 tubes (94 to 97) which are connected in parallel. The control grids of these four tubes receive their radio frequency excitation from the crystal oscilletor stage through capacitor (24). The screen grids of the power emplifier tubes are by-passed to ground through capacitor (14), and receive their D.C. supply voltage through two resistors (12) connected in series. The D.C. plate circuit of the power amplifier tubes from the 550 volt generator passes through the secondary winding of modulation transformer (54), through radio frequency choke coil (11), and then to the plates of the tubes. It will be noted that the D.C. screen circuit also must pass through the secondary of transformer (54). This is to enable both plate and screen of the four power emplifier tubes to be modulated as described further in this book. The radio frequency plate circuit of the power amplifier tubes, after passing through plate blocking capacitor (10) connects to the P. A. tank inductors (8) and the P. A. tank capacitor (9). There are two P. A. tank inductors, one of which is tapped for connection to a section of the ten position frequency switch (39).
4.3-A front panel control, marked "P. A. Tuning", has been provided on TCP-2 transmitters. This control permits the power amplifier tank capacitor (9) to be rotated from the front panel over a range of approximately 20 scale divisions. The "P. A. Tuning" scale is engraved from lo to 40 divisions, but stops are provided on the capacitor shaft to limit the movement of the pointer over the scole between approximately 15 to 35 divisions. Therefore, each position of the transmitter frequency switch (39) may be "Set Up" and "Calibrated" for any one frequency felling within the bands listed below in paragraph 4.4. The major purpose of the "P. A. Tuning" control on the front panel is to enable the TCP-2 normal frequency "Set Up" for one Naval district to be conveniently changed to a new frequency "Set Up" for another district. A calibration chart frame is mounted on the trensmitter panel and three charts are furnished with each equipment so that the necessary record may be made of trensmitter switch position, frequency, P. A. tuning and antenna tuning for a maximum of 10 transmitting frequencies.
4.2 - The nominal frequency range that is provided on each of the 10 positions of the frequency switch, in conjunction with the "P. A. Tuning" control, is as follows:

Transmitter
Switch Position

Approximate Rance (K.C.)
$2000-2250$
$2000-2275$
2000 - 2310
2070 - 2385
2210 - 2560
2350-2700
$2480-2870$
2570 - 2960
2625 - 3000
2710-3000
4.5 - When setting up the transmitter for a group of frequencies for a particular Naval district, careful reference should be made to the ranges listed in paragraph 4.4. For example, with switch position l the transmitter crystal must be a frequency between 2000 and 2250 K.C., while for position 2 the crystel must be between 2000 and 2275 K.C. taking care in each case that the crystal frequency for any switch position must fall within the band listed for that position. Always endeavor to select crystals and switch positions so that the crystal frequency is approximately near the center of the specified bends. Since each equipment is normally shipped "Set Up" for a particular Naval district, no changes in the "Set Up" for that district are required.
4.6 - The calibration chart contains the following instructions:
> "Important: - Be sure to adjust P. A. Tuning Control for MINIMUM P. A. Cathode Current with Antenna Tuning adjusted for NO Antenna Current. Then tune Antenna for MAXIMUM Antenna Current. Record settings below."

In other mords, for efficient operation it is important to make sure that the "P. A. Tuning" control has been adjusted for minimum P. A. cathode current for each operating frequency at the time the transmitter is installed and for subsequent operation. By recording the settings on the calibration chart, it will then be possible to quickly change from one transmitting frequency to another.
4.7 - Coupling between the power amplifier tank circuit and the antenna circuit is accomplished by means of capacitor (4), two capacitors (5) and four capacitors (6). A seven position antenna coupling switch (7) is used to connect one or more of capacitors (5 and 6) in parallel to capacitor (4). Since P. A. tank current flows through these antenna coupling capacitors and since the "low" end of the antenna inductor (1) is also connected to the antenna coupling capacitors, a suitable voltege is developed to couple out the P. A. tank to the antenna circuit. Access to the antenna coupling switch (7) is obtained through a small hinged door in the upper section of the right hand side panel.
4.8 - The antenna circuit is resonated to the desired frequency by means of a rotating variable inductor (l), controlled from the front panel, thereby enabling one or more turns of this coil to be used in the antenna circuit. VeederRoot counter is geared to antenna inductor (1). This counter will read 1000 when the coil is roteted to its maximum counterclockwise position for minimum inductance. The counter will read 1445 when the coil is rotated clockwise for maximum inductance. In changing from a lower to a higher frequency, the knob is rotated counter-clockwise and the counter will read toward lower numbers. Resistor (3) is used as a static leak for the antenna while the R.F. ammeter (2) is used to measure antenna current.
4.O - The send-receive relay (40) is equivalent to a double-pole double-throw switch. One pole of this relay transfers the low potential side of the antenna loading inductor either to the transmitter coupling capacitors or to the receiver input circuit. The second pole of this relay, in the transmit position, connects the cathode circuits of the oscillator and P. A. tubes to ground. In the receive position, this pole connects the receiver audio output circuit to ground and also permits a negative cutoff bias voltage to be applied to the oscillator and P. A. grias, this cutoff voltage being developed around resistor (42). The coil of send-receive relay (49), for "Press-to-Talk" operation, is energized through resistor (51) from the transmitter plate supply voltage divider resistors (63, 64 and 65). In the "Automatic" condition of operation, the coil of the send-receive relay (49) receives its energy from the rectified output of the 6AG Vodas tube (100). This Vodas tube functions as a full wave rectifier with the grids of the tubes acting as anodes which are connected across the secondary of the driver stage output transformer (55). Therefore, each time speech is impressed on the microphone under "Automatic" conditions, the send-receive relay is automatically energized placing the transmitter "on the air". A variable resistor (52) mounted inside the set and connected in parallel to the output of the Vodas tube permits an adjustment for Vodas sensitivity. In order to prevent overload or damage to the tubes, in the event that operation is attempted on any frequency for which no crystal is installed, the transmitter frequency switch (39) is provided with a ten position interlock section which is wired in series with the coil of send-receive relay (49). The color coded leads to this switch section are, therefore, to be connected to the contacts on the switch only for switch positions which have crystals inserted in the jacks
4.10 - Telephone modulation is accomplished as follows: The microphone receives its D.C. voltage from the drop across resistor (63). Reactor (58) and capacitor (59) are employed as filters. The microphone is connected to the primary of transformer (57) while the secondary of this transformer is connected to both control grias of the 6A6 microphone audio amplifier (98). The two parallel connected plates of this tube passes through
the primary of interstage transformer (56) and through resistor (62) to the 550 volt D.C. supply. Capacitor (67) is an audio by-pass and filter. Grid bias for the 6A6 microphone audio amplifier is obtained by means of cathode resistor (61) which is by-passed by capacitor (66). The secondary winding of interstage transformer (56) feeds the push-pull grids of the 6A6 driver tube (99). The push-pull plates of tube (99) are connected to the primary of driver transformer (55) while the secondary of this transformer is connected to push-pull grids of the 809 modulator tubes (101102) as well as the two gridis of the 6A6 Vodas tube (100). The push-pull plates of the 809 modulator tubes are connected to the primery of modulation transformer (54). The secondary of this transformer is in series with the D.C. plate supply of the power amplifier screen and plate circaits. Accordingly, when speech is impressed upon the microphone, the audio and modulator tubes ultimately develop an eudio frequency voltage across the secondary of modulation transformer (54), thereby modulating the carrier wave.
4.ll - The filament circuits of all tubes in the transmitter obtain their supply from filament trensformer (53). The primary of this transformer is connected to the collector rings on the transmitter motor generator. The transformer (53) has two secondary windings, one of which feeds the three 6A6 tubes and the two 809 tubes while the other secondary feeds all five 807 tubes.
4.12-An autometic motor starter (86) assembled inside the transmitter-receiver cabinet is employed to start the trensmitter motor generator. The starter coil is energized from the supply line through contacts on the switch hook of the hand telephone assembly (109), or similar contacts on the switch hook of the remote control unit. With this errangement, the transmitter motor generator is automatically started each time the handset is removed from its switch hook.
4.13 - Metering of the various circuits is accomplished by means of an $0-50 \mathrm{~m} . \mathrm{a}$. D.C. meter (47) in conjunction with meter switch (46). This meter switch has five positions and permits checking of oscillator cathode current, P. A. grid current, P.A. cathode current, modulator cathode current and the current through the send-receive reley coil. Shunts are provided for the various positiqns of the meter switch. The following currents may be measured with the meter switch:

Position

1	Oscillator Cathode
2	P.A. Grid
$* 3$	P.A. Cathode (lozded out)
$* 4$	Modulator Cathode
5	Send-Receive Relulated)
	(Push Button Cloil

(Push button closed)

Approximate Scele Reading

* On positions 3 and 4 of the meter switch, shunts are used internally so that the true current is ten times higher than that indicated on the meter scale. For example, in position "3" $30 \mathrm{~m} . \mathrm{a}^{2}$ on the meter is equivalent to $300 \mathrm{~m} . \mathrm{a}^{\mathrm{a}}$. P. A. cathode current.
** On position 1 a shunt is used so that true oscillator current is twice as high as that indicated on meter scale. For example, when meter reads $25 \mathrm{~m} . a$. oscillator cethode current is actually $50 \mathrm{~m} . a^{\circ}$.

5- RECEIVER CIRCUITS

5.1-Refer to drawing T-1209. The radio receiver unit is a superheterodyne employing eight tubes and using an intermediate frequency of $455 \mathrm{~K} . \mathrm{C}$. Provision is made for a maximum of ten pre-tuned frequencies between 2000 and 3000 K.C. In the description which follows, the symbol designations used on the wiring diagrams for the various parts are the numbers in perenthesis used below.
5.2 - The input circuit to the receiver includes radio frequency trensformer (3). Its primary winding is connected to the send-receive relay. The secondary winding of transformer (3) connects to the control grid of the 6L7 R. F. amplifier tube (103). The secondary winding is tuned for each of the desired receiving frequencies by means of the variable air trimmer capacitors (10), one of these capacitors being used for each of the frequencies. The control grid and grid \#5 of the R. F. amplifier connect to the AVC bias through resistor (5).
5.3 - The second tube in the receiver is the mixer 6 L 7 tube (104) which is coupled to the R. F. amplifier through R. F. transformer (19). The secondary of this transformer is tuned by a second group of trimmer capacitors (ll). Grid \#5 of the mixer tube receives energy from the 6C5 crystal controlled oscillator tube (109) so that an intermediate frecuency of 455 K.C. is produced in the plate circuit of the 6L7 mixer tube.
5.4 - The 6C5 crystal oscillator tube (109) is crystal controlled, provision being made for ten crystals one of which is used for each receiving frequency.
5.5 - The frequency of the receiver crystals always differs from the frequency of the desired received signal by $455 \mathrm{~K} . \mathrm{C}$. In order to keep the crystal frequencies themselves between 2000 and $3000 \mathrm{~K} . \mathrm{C} .$, , the crystals are ground $455 \mathrm{~K} . \mathrm{C}$. lower for receiving frequencies above approximately $2500 \mathrm{~K} . \mathrm{C} .$, and are ground $455 \mathrm{~K} . \mathrm{C}$. higher for receiving frecuencies below 2500 K.c. A cathode choke (17) in the 6C5 crystal oscillator tube furnishes feedback voltage through capacitor (16) to the control grid of this tube.
5.6 - The first intermediate frequency amplifier

6L7 tube (105) receives its 455 K.C. input through I. F. transformer (28) and delivers amplified output through I. F. transformer (60). The I. F. transformer (60) is coupled to the 6L7 second intermediate frequency amplifier tube (106) and the output of this tube is coupled through I. F. transformer (61) to the diodes of the 6R7 detector-A. F. amplifier tube (107).
5.7 - The audio component of the modulated signal appears across resistor (40) in the 6R7 diode circuit, and is then coupled through capacitor (55) and resistor (42) to the control grid of the triode section of the 6R7 tube. The amplified audio voltage of the plate circuit of the 6R7 tube appears across resistor (44) and is coupled through capacitor (51) to the control grid of the 6V6 output tube (108). The plate circuit of the $6 V 6$ output tube is connected to the primary of output trensformer (63). This transformer has two secondary windings, one of which feeds the loud speaker and the other the telephone receiver in the handset. To "Silence" receiver, while transmitting, bias voltage from P. A. grid leak in transmitter is applied through terminal 14 to the control grid of the 6R7 tube (107).
5.8 - Automatic volume control is applied to the control grid and number 5 grid of the R. F. amplifier, the first I. F. amplifier and the control grid of the mixer. The AVC voltage is developed across resistor (4I) which is connected to diode \#4 in the 6R7 tube. Resistor (35) and capacitor (59) are used as audio frequency filters on the AVC bus.
5.9 - Volume control is applied to the AVC bus by means of volume control (69) for local control only. The volume switch (71) is used to transfer the volume control circuit to volume control (5) in remote control units, when the latter are used.
5.10 - Plate screen and biss voltages for the receiver are obtained from the output of the 5 W 4 rectifier tube (110). The rectifier transformer (72) comprises a primary vinding which is connected to the receiver rotary converter, and has taree windings, one winding delivering 6.3 volts for the heaters of the tubes, one winding delivering 5 volts for the filament of the 5 W 4 rectifier, while the third winding, which is mid-tapped, furnishes 250 volts to the plates of the $5 \mathbb{T} 4$ rectifier tube.
5.ll - The receiver is provided with an additional tube socket for a 6C5 tube (lll) and a "ringer socket", these parts not being used in normal TCP-2 equipments. The 6C5 ringer amplifier and the ringer socket are normally employed only in commercial installations where the radio receiver is fitted with en automatic bell ringing device.
5.12 - The sensitivity of the receiver is such that an R. F. input of 2 to 5 microvolts, modulated 30 percent, at 2500 K.C., will produce an output of 50 milliwstts in the loud speaker. The selectivity provides a total band width of $9 \mathrm{~K} . \mathrm{C}$. for a ratio of 2 DB between input voltage off resonance to voltage at resonance. The total band width is approximately $16 \mathrm{~K} . \mathrm{C}$. for a 40 DB ratio, and approximately $24 \mathrm{~K} . \mathrm{C}$. for a 60 DB ratio. The maximum audio output of the 6v6 output tube (108) is one watt. The radiation from the receiver, when used on any antenna with which the transmitter will operate does not exceed 400 micro-microwatts for compliance with Federal Communicstions Commission subsection 8.130(b).
5.13 - The ten position three pole frequency switch (13) in the receiver is used to select the R. F. amplifier grid capacitors, the mixer grid capacitors and the appropriate crystal for each of the ten pre-tuned frequencies.
5.14 - The hand telephone assembly CRM-51026 comprises a "Press-to-Talk" handset, a switch hook, and certein resistors, the latter being used to establish an appropriate audio level in the telephone receiver of the handset.
5.25 - The CRM-23230 remote control unit contains a handset and switch hook similar to that of the CRM-51026 hand telephone assembly, and in addition uses a loud speaker, volume control and volume switch. Two 7 conductor cables are to be used.

6 - INSTALLLATION

6.1 - The transmitter-receiver unit should be installed in a location that permits access to both sides of the unit for adjustment and maintenance. Care should be taken not to install the set where it may be subjected to salt spray or excessive moisture conditions. A substantial ground connection should be run between the vessel's metal hull or ground plate, to the large stud near the right rear shock mount. The antenna lead-in should be run free from metal bulkheads or other grounded structures and should be connected to the stud on the insulstor at the top of the set. The rear bracket for the transmitterreceiver unit should be installed between the bulkhead and the set so that the unit is properly braced against shipboard vibration.
6.2 - The line filter unit should be installed on a bulkhead or other convenient point so that it may be connected to the set with the five foot rubber covered cable provided with the transmitter-receiver unit. When connecting the line filter unit to the set, carefully observe the markings in the unit so that the fuse will be dead when the switch is placed in the off position.
6.3 - The incoming power line from the ship's power source connects to the "line" end of the line filter unit. Polarity should be observed to insure that the fuse is in the positive side of the line and that terminal 20 (white lead) on the set is positive. Terminal 19 (black lead) should be negative. Use the following table for wire sizes. Any attempt to employ smaller size of conductor than those listed below will result in excessive voltage drop and unsatisfactory operation of the radiotelephone.

$0-35$
$35-60$

60 - 100

B \& S GAUGE
WIRE SIZE

32 VOLT SETS
6
4
2

CIRCULAR
MILS

26, 250
41,740
66,370

115 VOLT SETS
$0-35$
$35-60$
$60-100$
14
4,107
12
6,530
6.4 - When installing a remote control unit, refer to drawing $T-1209$, remove jumper between 6 and 7 on trens-mitter-receiver unit and splice and tape the pink lead from the local handset to the pink lead which runs to terminal "LH" on remote unit. Avoid confusing the color codes which are the same for each of the seven conductor remote cables.

7- ANTENNA AND GROUND SYSTEM

7.1 - Careful consideration must be given to constructing an efficient antenna for use with the equipment. In general, the antenna capacitance should not be less than 150 mmfd . nor more than 300 mmfd . The antenna may be of the "T", "L" or vertical rod type. In the case of a "T" or "L" type of antenna using a single wire, the total length, including lead-in should be approximately 25 to 35 feet . If a vertical rod type of antenna is used, a height of not less than 23 feet is necessary. Since antenna characteristics vary greatly between vessels, and depend upon the proximity of rigging, stecks, etc., it is necessary to "cut" the antenna to properly match the equipment. For example, if the transmitter cannot be resonated for frequencies around $2000 \mathrm{~K} . \mathrm{C} .$, a larger antenna is necessary. Likewise, if resonance is not obtained around 3000 K.C., a smaller antenna is needed. A suitable deck insulator is required to bring the antenna lead through the deck to the antenna post at the top of the trans-mitter-receiver ctibinet. Below the deck, suitable stand-off insulators (approximately $3^{\prime \prime}$ long) should be used for the antenna lead.
7.2 - A good low resistance ground system is highly essential. Failure to provide an adequate ground connection will seriously impair transmitter and receiver performance. If the vessel hull is metal, a ${ }^{\prime \prime}$ copper strip or a \# 4 AWG wire should be run from the ground stud (adjacent to terminal 16 on transmitter-receiver cabinet) to the nesrest point which is an integral part of the ship's metal hull. Paint, rust, etc., should be scraped from the hull connection to insure a positive low resistance ground. With wood hull vessels, a ground plate, below the water line, having an area not less than 12 square feet, should be used. This ground alate should then be connected through copper strip, or equivalent, as directly as possible to the ground stud on the transmitterreceiver cabinet. In some cases, the ground connection may be made to the engine bed or propeller sheft, provided the length of the lead to the transmitter-receiver ground stud is not too long. Miscellaneous piping, conduits, etc., on a vessel do not provide satisfactory ground connections.

8 - TRANSMITTER ADJUSTMENTS

8.1 - CAUTION: No adjustments should be made inside the transmitter-receiver unit except by authorized personnel who are familiar vith the various circuits and the voltages that are involved. Bear in mind that, whenever the radio receiver is turned on and the handset removed from its switch hook, 550 volts D. C., dangerous to life, exists on filter capacitors, transmitter tube plate leads and other parts of the circuit. Always replace handset on switch hook when reaching inside transmitter-receiver unit.
8.2 - Insert all transmitter and receiver tubes in their respective sockets, observing the tube types marked on the chassis to insure that the correct tubes are olaced in the proper sockets. Insert transmitter crystals in the jacks in the upper rear section of the transmitter making certain that the crystals plug into the proper jacks to correspond to the "Trans" switch positions
8.3 - The correct adjustment for the "P. A. Tuning" should then be determined so that a record of this adjustment may be made on the calibration chart, for future use. Place meter switch in position 3 to indicate P. A. cathode current. Temporarily disconnect antenna, or adjust antenna tuning so that no antenna current is obtained. Then turn "Off-On" switch to "On", remove handset, wait 15 seconds for tubes to warm up, and press handset push button. Next adjust "P. A. Tuning" for minimum P. A. cathode current (no antenna current should flow) Repeat this operation for each transmitting frequency which is to be adjusted. Refer to paragraph 4.4 to insure that the frequency for each "Trans" switch position falls within the frequency range shown in paragraph 4.4.
8.4 - Antenna coupling should be adjusted as follows: Connect antenna. Place the "Trans" switch in a position corresponding to the lowest frecuency for which the set is to be used. Adjust the seven position anterna coupling condenser switch to position 6. The first position of this switch is marked zero (0). Start the transmitter in the "Press-to-Talk" condition. Close the handset push button and rotate the anterna tuning coil for maximum antenna current. This.vill correspond to maximum P. A. cathode current es rezd by position 3 of the meter switch. The ideal power amplifier cathode current, with all circuits properly adjusted, is approximately $300 \mathrm{~m} . a$. (30 on the meter). If the P. A. current is less than this value, the coupling condenser switch may be edjusted to a lower number. Lower numbers on the coupling condenser sifteh incresses antenna coupling, while higher numbers decrease the coupling. The highest coupling is obtained when the switch is at the position marked zero (0).
8.5 - Now adjust the transiitter for the highest operating frequency and observe P. A. cathode current. In general, the P. A. cathode current will be lower on the higher frequencies because of increased antenna resistance. The point to observe in adjusting antenna coupling is to obtain the best compromise value for all operating frequencies. It is permissible to use a P. A. cathode current between 225 and $325 \mathrm{~m} . \mathrm{a}_{\mathrm{o}}$, , but every effort should be made to adjust for $300 \mathrm{~m} . a$. s nearly as possible. If the set loads out too greatly, even when position 6 is used on the coupling switch, it is recommended that additional coupling capacity be connected in parallel using condensers from the spare parts that are furnished. For example, a .OOl5 Model F condenser may be connected in parallel to the . 0015 condenser already in the set and the coupling switch then readjusted.
8.6 - Importent: After the correct ontenna coupling adjustment has been determined, disconnect the antenna temporarily and check the "P. A. Tuning" control setting again for minimum P. A. cathode current. The purpose of this check is to insure that the P. A. tank is kept in resonsnce when new antenna coupling capacity values have been selected, since variations in antenna coupling capacity will slightly detune the P. A. tank. When final scale readings for "P. A. Tuning" have been determined, for each transmitting frequency, record these settings on the calibration chert.
8.7-After transmitter circuits have been properly adjusted, "Autometic" operation should be checked. The 50,000 ohm Vodas sensitivity control in the upper left section of the transmitter is set in the factory at maximum sensitivity (full counter-clockwise) so that it acts as a high resistance shunt on the Vodas tube. If it is found that room noises are sufficient to energize the send-receive reley, then the control should be turned clockwise just enough to keep room noises from energizing the reley. If this control is turned too far clockwise, "Automatic" or "Vodas" operation from the microphone will be unsatisfactory and excessive "clipping" will occur.
8.8 - The installation man should be familiar with the arrangement for the "interlock" connections between the "trans" switch and the send-receive reley coil. The color coded leads to the switch are to be soldered only to used switch positions, all other leads to be taped up. Without this protective feature, the power amplifier tubes would draw excessive plate current each time the send-receive relay is closed, if an attempt were made to operate the set on any switch position which is not lined up and provided with a crystel. Refer to the table below for the color code.

1 - Red	6 - Red-Black
2 - Green	7 - Green-Black
3 - Orange	8 - Orange-Black
4 - Blue	9 - Blue-Black
5 - Brown	10 - Brown-Black

8.9 - Modulation should be checked by whistling into the microphone and noting that the antenna current increases during moduletion. With the meter switch in position 4 and a whistle into the microphone, the meter reading will increase to approximately 30 to $40 \mathrm{~m} . \boldsymbol{\theta}$.

2- RECFIVER ADJUSTMENTS

9.1-All receiver tubes should be in sockets and the eppropriate receiver crystels should be in jacks to correspond to the "Recr" switch positions that are to be used. Receiver crystal jacks are located between the group of ten trimmer capacitors toward the front panel and a second group of ten trimmer capacitors toward the rear. Access to the receiver for inserting tubes and crystals, and for alignment purposes, is obtained by loosening the four thumb screws on the receiver front panel and withdrawing chassis from the cabinet approximately two-thirds out. Take care not to withdraw chassis completely as this would cause the receiver to fall out of the cabinet and be damaged. Do not run transmitter when adjusting receiver. Keep handset on hook.
9.2 - The intermediate frequency of the receiver is 455 K.C. The I. F. circuits of the receiver have been carefully aligned at the factory and should not be altered unless there is definite evioence that readjustments are required. If the I. F. circuits require realignment, an accurately calibrated $455 \mathrm{~K} . \mathrm{C}$. modulated signal generator, or test oscilletor, is required. Also required is an audio output voltmeter ($0-3$ volt rectifier type), which is to be connected across the four ohm voice coil of the loud speaker. One terminal of loud speaker voice coil is "hot" and the other terminal is "giound". The "high side" of the signal generator should be connected through a .Ol mfd. blocking capacitor to the control grid cap of the 6L7 mixer tube (104), which is the tube adjacent to the 6C5 oscillztor tube (109). Do not remove normal connection to the grid cap of 6L7 mixer tube (104). Connect ground lead from signal generator to chassis of receiver. With signal generator operating at

TCP-2
Page 20

455 K.C., modulated, carefully adjust the two screws at the top of each I. F. transformer (28, 60 and 61), until the audio output voltmeter reads maximum. Volume control on receiver should be at maximum during these adjustments and the output from the signal generator should be kept fairly low so as not to overload the receiver circuits. A clearly defined "peak" should be observed when each one of the adjusting screws on the I. F. transformers has been correctly adjusted.
9.3 - The radio frequency adjustments are made by means of capacitors 10 and ll. There are ten separate variable air, 100 mmfd., units for the R. F. amplifier grid circuit and ten similar units for the mixer grid circuit. A pair of these units, that is, one in the R. F. amplifier grid and one in the mixer grid circuit, must be adjusted for each frequency to be received, with the "Recr" switch in the appropriate position. A.modulated signal generator, or test oscillator, 2000-3000 K.C. range should be used and the "high sidel of the generator connected to the antenna stud at the top of the cabinet. The low side should connect to receiver chassis (ground). Dependence should not be placed upon the frequency calibration of the signal generator, and instead the test frequency should be varied slightly around its nominal calibration until maximum sudio output is obtained. This is permissible because the crystal in the receiver is more accurate than the test oscillator, and, by varying the latter, the required test frequency is automatically obtained. Then, keeping the receiver volume control adjusted to a fairly low value, to avoid overload, adjust trimmer capacitors 10 and ll for maximum audio utput. This same procedure should be followed for each position of the "Recr" switch until all changes are correctly adjusted.
9.4 - If a signal generator, or test oscillator, is not available, trimmer capacitors 10 and 11 may be adjusted by receiving a signal from another vessel, or a shore station, taking care to keep the volume control at a low setting to avoid overload. If such facilities cannot be employed, incoming atmospheric noise may be used to adjust capacitors 10 and ll, provided special care is taken not to misaajust the capacitors to "image" frequencies. Two "peaks" may sometimes be obtained on capacitors 10 and ll, one of which is the correct "peak" and the other an "image". To avoid this, look at the trimmer capacitors from the underside of receiver chassis and observe that the following adustment has been made. When the received signal frequency is below approximately 2500 K.C., the correct "peak" setting for capacitors 10 and 11 should be such that more than half of the plates are meshed. For frequencies above 2500 K.C., less than half of the plates should be meshed. On the other hand, if image peaks, using noise, have been accidently obteined, capacitors

10 and 11 would be misadjusted so that the plates are practically all "in" (fully meshed) for frequencies above 2500 K.C., and nearly all "out" (unmeshed) for frequencies below 2500 K.C. For example, suppose 3000 K.C. is the receiving frequency, the "image" 910 K.C. lower than this value would be 2090 K.C. To resonate capacitors 10 and 11 to 2090 K.C. requires nearly all of their capacity which is obviously incorrect since the capacitors would be adjusted to use only a small fraction of their capacity when properly tuned to $3000 \mathrm{~K} . \mathrm{C}$.

10 - MAINTENANCE

10.1 - The contacts on the send-receive relay should be inspected occasionally to insure that they are clean and properly adjusted. These contacts operate in a certain sequence and care should be taken when cleaning the relay not to bend any of the springs. The correct contact sequence which should occur when the relay armature closes is:

1. - Back movable contact arm breaks circuit.

2 - Forvard movable contact arms breaks circuit.
3 - Forward movable contact arm makes circuit.
4 - Back movable contact arm makes circuit.
Correct contact sequence will insure no sparking at the antenna contact and freedom from clicks in the receiver. No adjustments should be made of relay armature clearance eacept by competent personnel.
10.2 - If a reduction in receiver sensitivity is observed and a check of the contacts on the send-receive relay indicates good contact, then the receiver tubes should be replaced one at a time with new tubes to determine if any one of the tubes require replacement. The verious D.C. voltages from the receiver rectifier output circuit may be checked with a high resistance voltmeter by referring to the values on the circuit diagram.
10.3 - In the event of difficulties with the transmitter, or receiver which are not corrected by tube replacements, conventional measurements, with an ohmmeter and a voltmeter, may be made to determine if resistors, concensers, trensformers, etc. are normal.
10.4 - After the equipment has been used for a reasonable period, the commutators and brushes on the machines should be inspected and cleaned, if necessary. New brushes should be installed, if inspection shows that the brushes in the machines have worn appreciably.
10.5 - The side panels for the set should be kept firmly fastened in place, all tubes kept properly seated in their sockets end the entire equipment maintained in an orderly manner for maximum performance and reliability.
10.6 - The taps on the primary of the receiver power transformer and on the primary and secondary of the transmitter filament transoriner are adjusted by the manufacturer for the specified line voltage. In special cases, due to low or high ship's line voltage, it may be desirable to change these taps, provided appropriate measurements are made of the filament voltage. In the case of the receiver transformer, that primery tap should be selected which provides as closely as possible a value of 6.3 volts at the tube sockets. In the case of the transmitter filament transformer, a primary tap may be selected whick also provides 6.3 volts at the transmitting tube socket. The secondary taps on the transmitter filament transformer should not be altered.
10.7 - The radio receiver chassis may be withdrewn by removing the four thumb screws on the receiver front panel. The 13 conductor color coded cable permanently wired to the receiver chassis terminates on the other end at the main terminal board. This cable may be disconnected from the terminal board and the cable clamp above the fuses removed temporarily. The receiver should then be pulled straight out from the cabinet, taking care not to damage the parts on the underside of the upper transmitter sub-panel. If access is required to the various parts on the underside of the transmitter upper subpanel, it is recommended that the receiver chassis be removed as outlined above.
10.8 - Inspection of the antenna tuning rotating inductor should be made occasionally by removing the top panel from the cabinet and observing that the movable contact shoe is properly engaging the turns. After considerable use, metal filings may accumulate between turns, due to normal wear and tear, and the coil may be cleaned by using a small brush. Do not apply any lubricant to the contact shoe or its supporting rod. The movable contact shoe engages against a stop at each end of the coil when the latter is rotated to its position of minimum or maximum inductance.
10.9 - No attempt should be made to alter the coupling or tuning adjustments of the crystal oscillator output circuit, as this circuit is carefully aligned at the factory and locked.
10.10 - The modulation capability of the transmitter should be checked at regular intervels by whistling into the microphone and noting that the antenna current increases approximately 15 to 20 percent. Modulation below normal can be due to a weak crystal oscillator tube, or weak 6A6 or 809 tubes. If no modulation at all is obtained and replacement of the tubes in the transmitter with spare tubes does not correct the trouble, this is an indication of an open circuit or shorted capacitor somemhere between the microphone and the 809 modulator circuit. Use of the meter switch for checking the currents in the various circuits will be found helpful in localizing the trouble.
10.11 - If the antenna current is below normal and the antenna insulation is in good condition, replacement of the crystal oscillator tube and one or more of the power amplifier tubes should be made. Normal operation of the power amplifier circuit, with antenna detuned or disconnected, should show a value of approximately $70 \mathrm{~m} . \mathrm{a}_{\mathrm{e}}$ (7 on the meter) of P.A. cathode current, meter switch position 3. If this circuit appears normal and little or no antenna current is obtained when the antenna tuning inductor is adjusted for resonance, then the coupling capacitors 4, 5 and 6 and the antenna coupling switch 7 should be checked. A shorted coupling capacitor will, of course, result in no antenna current.
10.12 - PARNING: Operating personnel should not attempt to measure potentials in excess of 500 volts due to hazards to life. Maintenance personnel should exercise extreme care when using external meters to measure any voltages in excess of 500 volts. Reference should be made to the circuit diagrams enclosed in the book for various voltage measurements throughout the transmitter and receiver circuits. Such voltage measurements will be found useful in locating trouble and in determining whether or not resistors or coils are open circuited or capacitors short circuited. In making voltage measurements, it is essential to use a high resistance voltmeter such as the OE-5 or a similar instrument having a resistance of at least 1000 ohms per volt. This is particularly true in measuring receiver circuit voltages, since the current drawn by the voltmeter will produce additional drop in the various resistors connected in circuit.
10.13 - In the event of complete non-operation of the transmitter or receiver unit, it is apparent that the fuses on the fuse board should be checked and that the line voltage supply also be checked. If transmitter is tested with receiver unit removed from cabinet, be sure to temporarily connect terminal 13 on main terminal board to ground, otherwise P. A. grid leak circuit will be open.
10.14 - The push button in the telephone handset may be removed for inspection or cleaning by using the Hinckley-Myers spline wrench which is supplied with the spare parts.

11- MACHINE MAINTENANCE
Receiver Rotary Converter
Transmitter Motor Generator
11.1 - The receiver inverter (rotary converter) should be inspected and lubricated once every three months, if the equipment is in more or less continuous service. The transmitter motor generator should be inspected and lubricated once every nine months.

TCP-?
Page 24
11.2 - For lubrication of ball bearings in the receiver rotary converter and transmitter motor generator, the following lubricants, or their equivalent, are recommended:

Lubrico M-6 - Master Lubricant Company, Philadelphia, Pa. Andoc C - Standard Oil Company of New Jersey. Lubriplate (Ball Bearing Type) - Fiske Brothers Refining Company, Newark, N. J.
11.3 - Access to the ball bearings of the receiver rotary converter is obtained by unscrewing the plugs at the end of each bearing. The entire rotary converter should be removed from the cabinet when the machine is lubricated and inspected, by unsoldering the two D. C. input leads removing the A. C. output plug and removing the nuts from the four studs which hold the base of the converter to the bottom of the cabinet. Do not remove the round head screws which pass through the rubber shock mounts on the mounting feet of the converter itself.

1l.4 - Access to the transmitter motor generator is obtained by removing the lower front panel and the rear shield on the cabinet. Then remove the end covers of this machine. Next remove the bearing cover plates, held with two screws at the ends of the bearings.
11.5 - Pack receiver rotery converter and transmitter motor generator ball bearings with clean lubricant so that the bearings are not more than one-third filled. Bearings should not be totally packed as excess grease may cause overheating end dirt may collect on commutators or collector rings. After bearings are greased, replace grease plugs on rotary converter and bearing cover plates, and also end covers on motor generator.
11.6 - At the time bearings are lubricoted, the conditions of commutators, collector rings and brushes should be checked. Commutators and rings in good condition should be free from burning and pitting, and should present a smooth light brown appearance. If necessary to sand commutators or rings, use \#00 sandpaper or finer. Emery cloth must not be used as metallic particles will introduce shorts between conmutator bars. Normally a clean piece of canvas may be used to "buff" commutators and rings. Avoid electric shock when dressing commutators and rings with machines rotating and with power on.
11.7 - When inspecting brushes, take special care to remove one brush at a time, placing a check mark on the top surface of the brush so that, when it is replaced in brush holder, it goes back in the same relative position. (If brush is replaced inverted, it will not bear on commutator in the same manner as originally "worn in".). When brushes have worn to approximately one-half their length when new, they should be replaced with new brushes. New brushes should be "sanded in" by placing a strip of \#OO sandpaper around commutator or collector ring, with the rough side toward the brush, and the armature rotated by hand to conform the brush face to the curvature of commutator or collector ring.

12- WINDING DATA

Radio Transmitter: The numbers in parenthesis correspond to similar numbers on drawing T-12I0.
12.1 - Antenne Inductor (1): Coil form Alsinag 21852, 6 inches long by 2 inches 0.D., threaded for a nine turn per inch winding and wound with a total of 45 turns of \#l4 AWG tinned copper wire.
12.2 - Power Amplifier Tank Cojls (8): Two used. Black Isolanthe type \#20849 or Alsimag F-9340. 3-1/2 inches long and $2-1 / 2$ inches O.D. Each coil wound with 22 turrs of \#l 16 AFG tinned copper wire. One of the two coils is tapped at every turn.
12.3 - Oscillator Coil Assembly (26): Primary, \#26 AWG encmel, close wound with a single layer of 28-1/2 turns on bakelite form 1-1/8 inches lone end 1-1/2 inches O.D. Secondary \#26 AWG enamel, close round with a single layer of 31 turns on bakelite form 4 inches long and 1-7/8 inches O.D.
12.4 - Send-receive relsy Coil (49): Coil wound with 37,000 turns of \#39 AWG enamel copper wire, resistence 5,000 ohms D.C.
12.5-Filament Trensformer (53):

For 115 Volt Supply - Type S-8059
Primary: \#2l enamelled, 212 turns, taps at 176 and 194 turns Secondary: \#l4 enamelled, 21 turns, taps at $17 \frac{1}{2}$ and $19 \frac{1}{2}$ turns Secondary: \#l2 enamelled, 18 turns, center tepred.

For 32 yolt Supply - Type S-8074
Primary: \#l5 enamelled, 57 turns, taps at 46 and 52 turns Secondary: \#14 enamelled, 21 turns, taps at $17 \frac{1}{2}$ and $19 \frac{1}{2}$ turns Secendary: \#l2 enamelled, 18 turns, center tapied.
12.6 - Modulation Transformer (54): - Type T-494-A

Primary: \#27 enamelled, 1560 turns, taps at 315,630 and 1050 turns.
Secondary: \#28 enamelled, 840 turns, tapped at 360 turns Secondary: \#28 enamelled, 840 turns, tapped at 480 turns
12.7-Interstage Transformer (56): - Type T-251

Primary: \#36 Enemelled, 23.00 turns
Secondery: Two sections - \#33 enamelled, 1000 turns each

TCP-2
Page 26
12.8 - Driver Transformer (55): - Type T-264-A

Primary: \#33 enamelled, 700 turns, taps at 400 and 600 turns.
Primary: \#33 enamelled, 700 turns, taps at 100 and 300 turns. Secondary: \#33 enamelled, 900 turns, tapped at 400 and 700 turns. Secondary: \#33 enamelled, 900 turns, tapped at 200 and 500 turns.
12.9 - Microphone Transformer (57): - Type T-l

Primary: \#35 enamelled, 750 turns
Primary: \#35 enamelled, 750 turns
Secondary: \#42 enamelled, 9380 turns
12.10-Microphone Reactor (58): - Type T-152
\#30 enamelled, 2900 turns.
Radio Receiver: The numbers in parenthesis correspond to similar numbers on drawing T-1209.
12.11 - R. F. Coil Assembly (3):

Primary Winding \#31 AWG enamelled, single silk, universal wound with 33 turns to an inductance of 50 microhenries.
Secondary Winding with $10 / 41$ Litz single layer of $58-1 / 2$ turns to an inductance of 60 microhenries. Spacing between primary and secondary, l/8n. Coil form bskelite 2-1/4" long, 1" O.D.
12.12 - Interstage Coil Assembly (19):

Same as R. F. Coil Assembly (3)
12.13- I. F. Trensformer (28): - Type 9900

Primary 7/41 Litz, Universal wound with 330 turns with tap at 60 Turns.
Secondary 7/41 Litz, Universal wound with 330 turns.
12.14- I. F. Transformer (60): - Type 9900

Same as I. F. Transformer (28)
12.15 - I. F. Transformer (61): - Type 9901

Primary 7/41 Litz, Universel wound for 330 turns with tap at 150 turns.
Secondary $7 / 41 \mathrm{Litz}$, Jniversal wound with 330 turns.

12.16 - Audio Output Transformer (63): - Type T-104

Primary: \#36 enamelled, 2822 turns.
Secondary: \#32 enamelled, 735 turns, tapped at 315 turns Secondary: \#23 enamelled, 130 turns, tapped at 68 and 97 turns

$$
12.17 \text { - Power Transformer (72): - Type S-7961-B }
$$

Primary: \#23 enamelled, 420 turns, trpped at 350 and 385 turns Secondary: \#33 enamelled, 1920 turns, center tapped. Secondary: \#l6 enamelled, 19 turns.
Secondery: \#l8 enamelled, 24 turns.

13 - VACUUM TUBES

13.1 - All tubes supplied with the equipment or as spares on the equipment contract shall be used in the equipment prior to employment of tubes from general stock.

$$
13.2 \text { - List of Tubes Employed: }
$$

In The Transmitter

$$
\begin{aligned}
& 1 \text { - Type } 807 \text { tube as Cless "C" Oscillator, Crystal } \\
& \text { controlled (93) } \\
& 4 \text { - Type } 807 \text { tubes as Class "C" Amplifiers, plate } \\
& \text { modulated (94-95-96-97). } \\
& 2 \text { - Type } 809 \text { tubes as push pull Class "B" Modulators } \\
& \text { (101-102). } \\
& 1 \text { - Type 6A6 tube as push pull Cless "B" Audio } \\
& \text { Driver (99). } \\
& 1 \text { - Type 6A6 tube as Class "A" Microphone Audio } \\
& \text { Amplifier (98). } \\
& 1 \text { - Type 6A6 tube as Vodas Audio Rectifier (100). }
\end{aligned}
$$

In The Receiver

```
l - Type 6L7 tube as Radio Frequency Amplifier (103).
l - Type 6L7 tube as Mixer (104).
l - Type 6L7 tube as First I.F. Amplifier (105).
l - Type 6L7 tube as Second I.F. Amplifier (l06).
l - Type 6C5 tube as Class "C" Oscillator, Crystal
    Controlled (109).
l - Type 6R7 tube as Second Detector-First Audio
    Amplifier (l07).
1 - Type 6V6 tube as Class "A" Second Audio Amplifier (108).
l - Type 5W4 tube as power rectifier (llO).
```

13.3 - The vacuum tubes used in this equipment must be operated at their correct filament potential in order to obtain satisfactory tube life. Excessive line voltage supply will result in over-voltege on the vacuum tubes, while subnormal supply voltege will result in reducing emission from the filaments and in time a decrease in performance. Reference should be made to the instructions in paragraphs 17.6 for cases where the supply voltage is regularly high or low:
13.4 - The following tabulation compares the operation of the tubes, as used in the equipment, with the maximum ratings as specified by the tube manufacturer.
23.5-Type 807 tube as Class "C" Oscillator. crystal controlled.

13.2 - Type 6A6 tube as Class MA" Microphone Audio Amplifier.

Full Load	Maximum
Operating Data	Rating

Plate Voltage	270 Volts	300 Volts
Plate Current	7 m.	7 m.a.
Plate Dissipation	5.4 Watts	10 Watts
Filament Voltage	6.3 Volts	6.3 Volts
Filament Current	.8 Amps	.8 Amps
Control Grid Voltage (DC)	Minus 6 Volts	Minus 6 Volts

13.10 - Type 6A6 tube as Vodas Audio Rectifier. This tube is used as a simple full wave rectifier with the two grids functioning as anodes and with the two plates connected to the cathode to deliver approximately 3 m.a. at 150 volts D.C. for the send-receive relay coil.
13.11 - Type 6L7 tube as Class "A" Radio Frequency

Amplifier.

Plate Voltage	210 Volts	300 Volts
Screen Voltage	90 Volts	100 Volts
Plate Dissipation	1 Watt	1.5 Watt
Screen Dissipation	.5 Watt	1 Watt
Filament Voltage	6.3 Volts	6.3 Volts
Filament Current	.3 Amps	.3 Amps

13.12-Type 6L7 tube as Mixer.

Plate Voltage	180 Volts	300 Volts
Screen Voltage	90 Volts	150 Volts
Plate Dissipation	.8 Watts	1 Watt
Screen Dissipation	.8 Watts	1.5 Watts
Filament Voltage	6.3 Volts	6.3 Volts
Filament Current	.3 Amps	.3 Amps

13.13 - Type 6L7 tube.as Class "A"T.F. Amplifier in First and Second Stages.

Same as Type 6L7 tube in paragraph 20.11
13.14-Type 6C5 tube as Crystal Controlled R.F.

Oscillator.

Plate Voltage
Plate Dissipation
Plate Current
Filament Voltage
Filament Current

150 Volts	250 Volts
.75 Watts	2.5 Watts
5 moa.	8 mea.
6.3 Volts	6.3 Volts
.3 Amps	.3 Amps

13.15 - Type 6R7 tube as Second Detector and First Audio Amplifier.

Full Load	Maximum
Operating Date	Rating

Plate Voltage	90 Volts	250 Volts
Plate Dissipation	.18 Watts	2.5 Watts
Plate Current	2 mea.	9.5 m.a.
Filament Voltage	6.3 Volts	6.3 Volts
Filament Current	3 Amps	.3 Amps

13.16 - Type 6V6 Class "A" Second Audio Amplifier.

Plate Voltage
Screen Voltage
Plate Dissipation
Screen Dissipation
Plate Current
Screen Current
Filament Voltage
Filament Current

200 Volts
200 Volts 6 Fatts
. 8 Watts
$30 \mathrm{~m} . \mathrm{a}$.
4 m.a.
6.3 Volts
. 45 Amps

315 Volts
250 Volts
12 Watts
2 Viatts
34 m.a.
$2.2 \mathrm{~m} . \mathrm{a}$.
6.3 Volts
. 45 Amps
13.17-Type $5 W_{4}$ tube as Full Wave Rectifier.

Peak Inverse Voltage 700 Volts 1400 Volts
Peak Inverse Plate Current ($\mathrm{p} \in \mathrm{r}$ plate) $200 \mathrm{~m} . \mathrm{a}^{2} \quad 300 \mathrm{~m} . \boldsymbol{\theta}$
DC Output Current
Filament Voltage
Filament Current
$80 \mathrm{~m} . \mathrm{a}$.
5 Volts
1.5 Amps

100 m.a. 5 Volts
1.5 Amps
13.18 - In the above tabulation of trensmitter tubes, the type 807 power amplifier tubes are operated as plate modulated power amplifiers between CCS and ICAS ratings. Due to the naturally intermittant nature of the load on these tubes in "send-receive" operation, normal average tube life will be obtained.

14-COASTAL HARBOR STATIONS AND CRYSTAL LIST

HARBOR STATION	$\begin{aligned} & \text { CALL } \\ & \text { LETTEHS } \\ & \hline \end{aligned}$	TRANS. CRYS.	RECR. CRYS	RECR. FREQ.
Boston	wou	2110	2051	2506
San Francisco	KLH	2110	2051	2506
Miemi	WDR	2118	2059	2514
Lorain	WMI	2118	2059	2514
Port Washington	WAD	2118	2059	2514
Duluth	WAS	2118	2059	2514
Lake Bluff	WAY	2118	2059	2514
New York (2nd Channel)) WOX	2126	2067	2522
Seattle	KOW	2126	2067	2522
San Juan	WCT	2134	2075	2530
Galveston	KQP	2134	2075	2530
Norfolk	WGB	2142	2083	2538
Tampa	WFA	2158	2095	2550
Lorain	WMI	2158	2095	2550
Port Piashington	WAD	2158	2095	2550
Duluth	WAS	2158	2095	2550
Lake Bluff	WAY	2158	2095	2550
Wilmington (Dele- ware City) WEH 2166 2103 2558				
Ocean Gate	WAQ	2166	2103	2558
Charleston	WER	2174	2111	2566
Los Angeles (San Pedro)	KOU	2174	2111	2566
All Great Lakes				
Stations ((Calling)	2182	2637	2182
Nev: York (lst Channel)) WOX	2198	2135	2590
Nefi Orleans	WAK	2206	2143	2598
Astoria (Oregon)	KFX	2206	2143	2598
Portland (Oregon)	KQX	2206	2143	2598
U.S. Coast Guard				
Intership		2738	2283	2738
C \& D \& Cape Cod				
Canals		2350	2805	2350
Second Intership				
Buffalo	WBL	2118	2059	2514
Buffalo	PiBL	2158	2095	2550

INSTRUCTIONS FOR
POWER CONVERSION KIT
The following instructions apply with respect to 32 volt power conversion kit, when the latter is furnished, so that TCP-2 equipment, normally built for 115 volt $D . C$. supply, may be changed over for operation on 32 volts D. C.

The following units comprise a 32 volt kit. The symbol designations referred to are the same as those shown in the tables, circuit diagrams and photographs in the instruction book:

Symbol
Quantity
Designation

1	-	Nameplate, MODEL TCP-2, 32 V . DC (with blank serial number pad)
1	-	Nameplate, TYPE CRM-43009-A, 32 V . DC (with blank serial number pad)
1	-	Line Filter Unit, type CRM-53085, 32 V. DC.
1	53	Transformer, transmitter filament, Kenyon Type S-8074.
1	72	Fuse, cartridge, 2^{n}, renewable, $250 \mathrm{~V}, 15 \mathrm{amp}$.
1	73	Fuse, glass, Littelfuse Type 3-AG, $250 \mathrm{~V}, 10 \mathrm{amp}$.
1	76	R.F. Choke, transmitter motor generator input, Ohmite Type 3230
1	85	Motor Generator, transmitter, type ET-8012-B, Pioneer \#ss-2049, 31 V. DC input.
1	86	Motor Generator Starter, GE CR-4052-Y1, cat. 6932935-G-15, $32 \mathrm{~V} . \mathrm{DC}$.
1	86b	Resistor, starter coil shunt, IRC type BT-2, 2 W, 2000 ohms. (Mounted in Starter).
1	87	Rotary Converter, receiver, type W-1144-B, Pioneer \#SS-1173, 32V. DC input.
		PARTS
	32 VOLT POWE	CONVERSION XIT
12	6 (sec. 5)	Fuse Link, $3^{n \prime}, 250 \mathrm{~V}, 60 \mathrm{Amp}$.
12	72	Fuse Link, ${ }^{\text {n }}$, $250 \mathrm{~V}, 15 \mathrm{Amp}$.
12	73	Fuse, glass, Littelfuse Type 3-AG, $250 \mathrm{~V}, 10 \mathrm{amp}$.
1	86 b	Resistor, starter coil shunt, IRC Type BT-2, 2 watt, 2000 ohms.
2 sets	-	```Brushes, for motor generator type ET-8012-B, SS-2049.```
2 sets	-	Brushes, for rotary converter type W-1144-B, SS-1.173
1	-	Filter Assembly, for rotary converter as above.
1		Starter Coil, \#22D104 G3

To replace the existing lls valt D.C. unite oith the equivalent 32 volt units, certain precoutions should be observed as outlined below:

Line Filter Unit: Remove CRM-53086 line filter unit (115 volt) and replece with CRM-53085 line filter unit (32 volt).

Transmitter Motor Generetor: Remove motor generator SS-2048 (115 volt D.C.) and replece vith motor generator SS-2049 (32 volt D.C.). In performing this operation, care should be taken to retain the leads to the terminal board in their same relative position so that transposition of wiring will not occur when the 32 volt machine is connected.

Receiver Rotary Converter: Remove rotary converter SS-1172 (ll5 volt D.C.) and replace with rotary converter SS-1173 (32 volt D.C.).

Transmitter Motor Generator R. F. Choke: Remove present type $2-22$ choke and replece viith type 3230. This choke is mounted underneath the rear end of the transmitter motor generator.

Fuses: Remove 250 volt, 10 amp, cartridge fuse and replece with 250 volt, 15 amp, cartridge fuse. Remove 250 volt, 3 amp , glass fuse and replece 250 volt, 10 amp , gless fuse (type 3-AG).

Filement Transformer: Remove radio receiver and turn set upsice down to provide access to the soldered terminals at the base of the filament transformer. This is transforner symbol 53. Carefully unsolder leads, keeping them in their same relative position and then remove transformer S-8059. Replace with transformer S-8074. Refer to sketch below to identify the verious leads as they are to be

Namepletes: Install the Model and Type namepletes which are furnished.

Motor Starter: Remove present 115 volt D.C. motor sterter and replece with catalog 6932935-G-15 sterter for 32 volts D.C. When this is done, observe carefully the connections to the starter so that they are not trensposed when the 32 volt unit is connected. The starter lead marked "Htr" is a lead which connects to the terminal marked "L2", draming T-12lo. Terminal "L2" is actually the connection for the heater type overload relay on the motor starter. Other sterter leads are marked "A2", "Al-LI", and "2n. The 2000 ohm, 2 watt, sterter coil shunt resistor, symbol 86b, will be found already connected and mounted on the 32 volt sterter.

TABLE NO. I
LIST OF MAJOR UNITS

MODEL TCP-2 - RADIOTELEPHONE EQUIPMENT

CONTRACT NXSB 36947 Dated September 6, 1943

Navy Type Designation.	Name	$\begin{aligned} & \text { Assembly } \\ & \text { Drawing } \end{aligned}$
CRM-43009-A	Transmitter-Receiver (32 Volts)	KS-12
CRM-43010-A	Transmitter-Receiver (115 Volts)	KS-12
CRM-53085	Line Filter Unit (32 Volts)	KS-15
CRM-53086	Line Filter Unit (115 Volts)	KS-15
CRM-51026	Hand Telephone Assembly	KS-14
CRM-23230	Remote Control Unit	KS-13
	60 Ft . Length 7 Conductor -	
	- Remote Control Cable	
	1 Set of Vacuum Tubes	
	4 Type Rl Transmitter Crystals	KS-63
	4 Type Rl Receiver Crystals	KSe63
	2 Metal Spare Parts Box (Navy Specs 42-B-9 (INT))	
	```1 Set Spare Tubes and Spare Parts (See Table IV)```	
	2 (See Table IV)	

Table no, II
SECTION 1 - TRANSMITTFR PARTS ONLY - REFERENCE DRATING T- 1210 CRM-43009-A - 32 VOLTS D.C. CRM-430IO-A - 115 VOLTS D.C.

*SP:RE PARTS FURNISHED: For actual quantity of spare parts, refer to Table IV

Table II - Sheet 1

SECTION 1-TPANSMITTER PARTS ONLY - REFEPENCE DRAMINC T-1210
CRIT-43009-A - 32 VCITS D.C.
CRM-43010-A - 115 VOITS D.C.

table Mc. II


CREA-43010-A - 115 VOLTS D.C.

| SIMBOL |  |
| :--- | :--- | :--- |
| DESIG. |  |
|  |  |


$\begin{aligned} & \text { NAVI TYPE } \\ & \text { DESIG. } \end{aligned}$	NAVY DWGS \& SPEC. NO.	MFR	$\begin{gathered} \text { MFRS } \\ \text { DESIGNATJON } \end{gathered}$	SPECTAL TOLERANCE Rating $O$ R MODTFTCATTON	CONTRACTOR'S DRAWING PAPTT NTTME:R

## R, F, TRANSFORMERS - INDUCTORS - CHOKES - CLASS 47 (Cont'd)

*13 P.A. Screen Choke (4 Used)
*20 P.A. Grid Choke
Osc. Coil Assembly
Osc. Cathode Choke
Motor Choke
Motor Choke
A.C. Choke

High Voltace Choke

Ohms with 10 turns \#14 Bare Wire in
arns \#14 Bare ire in


## TRANSFORMCRS AND REACTORS: POWER AND AUDIO - CLASS 30

Prim. 18, $20 \& 22$ Volts.
Sec. $1-6.3,6.9,7.5$ Volts, 4.65 Amps
Sec. 2-6.3 Volts, 7.4 Amps - Total Sec. $82 \mathrm{~W} \quad$ None None 10 Type S-8074 None $\quad$ TP 3
Prim. 68, 75, 82 Volts.
Sec. 1 - $6.3,6.9,7.5 \mathrm{Volts}, 4.65 \mathrm{Amps}$
$\begin{array}{lllll}\text { Sec. } 1-6.3,6.9,7.5 \mathrm{Volts}, 4.65 \mathrm{Amps} \\ \text { Sec. } 2-6.3 \text { Volts, } 7.4 \mathrm{Amps}-\mathrm{Total} \mathrm{Sec.} 82 \mathrm{~W} \quad \text { None } & & \text { None } 10 \quad \text { Type S-8059 None } \\ \text { Primer to }\end{array}$
Prim. to match plate
Sec. to modulate class "C" load of 550 volts,
300 m.a., D.C.

None	None	10	Type T-494-A	None	TA-7
None	None	10	Type T-264-A	None	TA-12
None	None	10	Type T-251	None	TA-0
None	None	10	Type T-1	None	TA-2
None	None	10	Type T-152	None	XL-13

Prim. to match plate to plate load of 6A6 Tube
Sec. to match grids of two 809 tubes
Prim. to match parallel plates of 6A6 tule
Sec. to match grids of 6A6 tube
rim. to match carhon microphone
Sec. to match para?lel grjds of 6A6 tule
None
None
10 Type T
None
$\times \mathrm{I}-13$
METERS - CLASS 22
*2 Antenna Current Anmeter
Ammeter 0-8 Amps, R.F., Internal Thermocouple
3年" flush, phenolic case None None 35 S-1159626
None
AM -17
*4 Osc.,P.A.,Mod.,Cathode -
P.A. grid,Relay Coil Armeter
$3 \frac{1}{2}$ " flush, phenolic case
None
None $35 \quad$ S-1150724
None
AM-28
*SPARE FARTS TIRRISHFD: For Actual quantity of spare parts, refer to Table IV

GRH-43009-A - 32 VOLTS D.C.
CRM-43010-A - 115 VOLTS D.C.
$\square$
FUNCTION
DESCRIPTION
NAVY TYPE
DESIG.

NAVY DWGS   \& SPEC. NO.	MFR


MFPS	SPFCIALL TCITRANC
RFSIGTING OR	
MODIFICATION	

## RESISTORS - CLASS 63

*3	Antenna Drain Resistor
*12	P.A.Screen Resistors (2 Used)
*16	P.A.Plate Resistors (4 Used)
*17	P.A.Grid Resistors (4 Used)
*21	P.A. Grid Resistors (2 Used)
*22	Meter Shunt Resistor
*23	Osc. Load Resistors (2 Used)
*27	Osc. Grid Resistor
*28	Osc. Plate Resistor
*29	Osc. Screen Resistors (2 Used)
*33	Osc. Screen Resistor
*37	Osc. Grid Resistor
*38	Osc. Crystal Resistor
* 41	Meter Shunt Resistor
* 42	Keying Resistor
* 43	Meter Shunt Resistor
* 44	Meter Shunt Resistor
*50	Meter Shunt Resistor
*51	Relay Coil Resistor
*52	Vodas Sensitivity Control Resistor
*60	Audio Grid Resistor
* 61	Audio Catrode Resistor
*62	Audio Plate Resistor
*63	Voltage Divider Resistor
*64	Voltage Divider Resistor (4 Used)
*65	Voltage Divider Resistor (4 Used)
*70	Vodas Resistor (2 Used)
*861	Starter Coil Shunt Fesistor
*861	Starter Coil Shunt Resistor
*89	Keyjng Filter Resistor
*90	Osc. Keying Resistor

2 Megohms, 1 W, plus or minus $10 \%$, Carbon 5000 Ohms, 5 W , plus or minus $10 \%$, Carton 15 Ohms, 5W, plus or minus $10 \%$, "ire Found SAME AS 16
SAME AS 12
25 Ohms, 5 W , plus or minus $5 \%$, Wire Nound 10,000 Ohms, 2 W , plus or minus $10 \%$,

Metallized
SANE AS 16
SAME AS 16
100,000 Ohms, 2 W , plus 0 , minus $20 \%$
Metallízed

20,000 Ohms, 2 W , minus 0, plus $20 \%$, Cartion 25,000 Ohms, 1 W , plus or minus $10 \%$, Cartion $100 \mathrm{Ohms}, 1 / 2 \mathrm{~W}$, plus or minus $10 \%$, Carbon

2 Ohms, 5 W , plus or minus $5 \%$, Wire Wound 50,000 Ohms, 2 W , plus or minus $10 \%$, Cart on 0.22 Ohms, plus or minus $5 \%$, Wire Wound

## SAME AS 43

SAMP AS 22
25,000 Ohms, 2 W , plus or minus $10 \%$, Carton 50,000 Ohms, plus or minus $10 \%$, Carbon Variable
50,000 Ohms, $1 / 2 \mathrm{~W}$, plus or minus $10 \%$, Carton 750 Ohms, 5 外, plus or minus $10 \%$, Carbon 40,000 Ohms, 5 W , plus or minus $10 \%$, Carbon 200 Ohms, 5 W , plus or minus $10 \%$, Carbon SANE AS' 12
10,000 Ohms, 5 W , plus or minus $10 \%$, Carbon 1000 Ohms, $1 / 2 \mathrm{~W}$, plus or minus $10 \%$, Carbon 2000 Ohms, 2 W , plus or minus $10 \%$, Metallized SAME AS 23
500 Ohms, $1 / 2 \mathrm{~W}$, nlus or minus $10 \%$, Carbon
SANE AS 42
SAME AS 23

None	None	13	Standard	None	RE-257
None	None	14	Type D5ST2	None	RE-183
None	None	12	Type AA-3-B(PN-2003)	None	RE-29
-	-	-	---	-	-
-	-	-	---	-	-
None	None	12	Type AA-3-B	None	RE-45
None	None	12	Type ET-2	None	RE-194
-	-	-	-	-	-
-	-	-	---	-	-
None	None	12	Type ET-2	None	RE-235
None	None	13	Standard	Nore	RE-208
None	None	13	Standard	None	RE-214
None	None	13	Standard	None	RE-64
None	None	12	Type AA	None	RE-10
None	None	13	Standard	None	RE-230
None	None	15	Type 1-FX	None	RE-1
-	-	-	---	-	-
-	-	-	---	-	-
None	None	13	Standard	None	RE-215
None	None	12	9851-9058	None	RM-47
None	None	13	Standard	None	RE-227
None	None	14	Type D5ST2	None	RE-126
None	None	14	Type D5ST2	None	RE-225
None	None	14	Type D5ST2	None	RE-80
-	-	-	---	-	
None	None	14	Type D5ST2	None	RE-196
None	None	13	Standard	None	RE-133
None	None	12	Type ET-2	None	RE-148
-	-	-	---	-	-
None	None	13	Standara	None	RE-108
-	-	-	---	-	-

TARLE HO. II
PaRTS LIST EY SYMBor DESTCNATT On
SECTION 1 - TRANSMITTER PARTS ONLY - REFYRENCE DRAWING T- 1210
CRU-43009-4 - 32 VOLTS D.C
GRU-43010-A - 115 VOITS D.C
CRM-43010-A - 115 VOLTS D.C

FUNCTION
DESCRTPTION
NAVY TYPE

	NAVY DWGS	MPR	
DESIG.	\& SPEC. NO.	MPR	MPRS   DESIGNATION

## CAPACITORS - CLASS 48

	By-Pass Capacitor	Mica, . 01 mfd., plus or minus $10 \%$ 1000 V, D.C. Test	None	None	1	Type EE-10	None	CA-177
4	Filter Capacitor	Paper, .l.1.1 mfd., plus or mjnus $10 \%$ 300 V, D.C. Working	None	None	4	5239320-G1	None	CA-206
10	R.F. Tun. Capacitor (10 used)	Var.Air, $100 \mathrm{mmfd}, 500 \mathrm{~V}$ DC Test, 27 Plates	None	None	36	AP-9	None	CA-56
11	Mixer Tun. Capacitor (10 used)	SAME AS 10	-	-	-	---	-	-
*15	Coupling Capacitor	Mica, 100 mafd., plus or minus $10 \%$ $1000 \mathrm{~V}, \mathrm{D} . \mathrm{C}$. Test	None	None	1	Type D	None	CA-63
*16	Coupling Capacitor	SAME AS 15	-	-	-	---	-	-
*18	By-Pass Cafacitor	SAME AS 15	-	-	-	--	-	-
*20	Coupling Capacitor	Mica, 200 mmfd., plus or minus $10 \%$ 1000 V, D. C. Test	None	None	ま	Type D	None	CA-66
*26	By-Pass Capacitor	SAME AS 9	-	-	-	---	-	-
*29	By-Pass Capacitor	SAME AS 4	-	-	-	---		-
* 32	By-Pass Capacitor	SAME AS 9	-	-	-	---	-	-
*50	Equalizing Capacitor	Mica, . 004 mfd., plus or minus $10 \%$ 5000 V, D.C. Test	None	None	3	Model NF	None	CA-159
*51	Coupling Capacitor	SAME AS 4	-	-	-	---	-	-
*52	Goupling Capacitor	SAME AS 4	-	-	-	---	-	-
*53	Volume Control Capacitor	Paper, . 1 mfd., plus or minus $10 \%$ 200 V, D.C. Working	None	None	24	Type Z-282	None	CA-201
*54	By-Pass Capacitor	SAME AS 15	-	-	-	---	-	-
*55	By-Pass Capacitor	SAME AS 4	-	-	-	---	-	-
*56	By-Pass Capacitor	Mica, $100 \mathrm{mmfd} .$, plus or minus $10 \%$ 1000 V, D.C. Test	None	None	1	Tyne BE-10	None	CA-63
*57	By-Pass Capacitor	SAME AS 56	-	-	-	---	-	-
*58	By-Pass Capacitor	SAME AS 9	-	-	-	---	-	-
*59	AVC Capacitor	SAME AS 4	-	-	-	---	-	
*62	Diode Capacitor	SAME AS 15	-	-	-	---	-	-
*74	Filter Capacitor	Paper, 2 mfd., plus or minus $10 \%$ 600 V, D.C. Working	None	None	4	5225569	None	CA-231
*75	Filter Capacitor Bias Capacitor	Electrolytic, $24 \mathrm{mfd} .$, plus or mimus $20 \%$ 350 V, D.C. Working   Electrolytic, 25 mfd., plus or minus $20 \%$ 50 V, D.C. Working	None None	None None	33 25	$\begin{aligned} & 4 \text { W-3 (300r SJ } \\ & \text { EDJ-3250 } \end{aligned}$	None None	$\begin{aligned} & \mathrm{CA}-251 \\ & \mathrm{CA}-252 \end{aligned}$
		INDICATING IAMPS -						
*81	Pilot Light	Mazda 40, $6.3 \mathrm{~V}, 0.15$ Amps   Miniature Base, Brown Eead	None	None	4	Type 40	None	LA-5

TABLE NO. II
PARTS LIST BY SYNBOL DESIGNATION
$\frac{\text { SECTION } 2-\text { RECEIVER FARTS ONLY - REFERENCE DRANING T-1209 }}{\text { CRAT-4300́9-A }=32 \text { VOITS D.C. }}$
CRTA-43009-A -32 VOLTS D.C.
CRI $-43^{3} 010-115$ VOLTS D.C.


$\begin{array}{ll}\circ & 8 \\ \sim & \sim \\ \sim\end{array}$	$\begin{aligned} & \text { SYMBOL } \\ & \text { DESIG } \end{aligned}$	FUNCTION	DESCRIPTION	NAVY TYPE DESIG.	NAVY DHGS \& SPEC. NO.	MFR	MFRS   DESIGNATION	SPECIAL TOIERANCE RATING OR MODIFICATION	$\begin{aligned} & \text { CONTEACTOR'S } \\ & \text { DRAWING \& } \\ & \text { PART NUMBER } \end{aligned}$
	RESISTORS - CLASS 63 (Cont'd)								
	*34	Cathode Resistor	500 Ohms, $1 / 2 \mathrm{~W}$, plus or minus $10 \%$, Carbon	None	None	13	Standard	None	RE-108
	*35	AVC Resistor	SAME AS 21	-	-	-	---	-	-
	*36	Screen Resistor	SAME AS 6	-	-		---	-	-
	*37	Screen Resistor	SAME AS 7	-	-	-	---	-	-
	*38	Plate Resistor	SAME AS 8	-	-	-	---	-	-
	* 3 c	Diode Resistor	50,000 ohms, $1 / 2 \mathrm{~W}$, plus or minus 10\%, Carbon	None	None	13	Standard	None	RE-227
	* 40	Diode Resistor	SAME AS 21	-	-		---	-	-
	* 4.2	AVC Resistor	250,000 Ohms, 1/2 W, plus or minus 10\%,Carbon	None	None	13	Standard	None	RE-243
	* 42	Goupling Resistor	SAME AS 5	-	-	-	---	-	-
	* 43	Grid Resistor	1 Megohm, 1/2 W, plus or minus 10\%, Carbon	None	None	13	Standard	None	RE-252
	* 44	Flate Resistor	SAME AS 5	-	-	-	---	-	-
	* 45	Grid Resistor	SAME AS 43	-	-	-	---	-	-
	* 46	Grid Resistor	SAME AS 21	-	-	-	---	-	-
	* 47	Plate Resistor.	25,000 Ohms, 2 W , plus or minus 10\%, Carbon	None	None	13	Standerd	None	RE-215
	* 48	Grid Resistor	SAIIE AS 5	-	-	-	---	-	-
	$* 48$ $* 66$	Audio Limit Resistor Ringer Resistor	100 Ohms, $1 / 2 \mathrm{~W}$, plus or minus $10 \%$, Carbon 50,000 Ohms, 2 W , plus or minus $10 \%$,	None	None	13	Standard	None	FE-64
			Metallized	None	None	12	Type BT-2	None	RE-230
	*67	Ringer Resistor	SAME AS 66	-	-	-	Jype	-	-
	*68	Bias Limit Resistor	50,000 Ohms, $1 / 2 \mathrm{~W}$, plus or minus $10 \%$, Metallized	None	None	12	Type BT-2	None	RE-227
	*69	Volune Control Resistor	250,000 Ohms, Plus or mimus 10\%, Variable	None		12	Type BT-2		RE-22
			(includes switch 65)	None	None	12	9852-5247	None	RH-51
	*70	Isolating Resistor	5000 Ohms, $1 / 2 \mathrm{~W}$, plus or minus 10\%, Carbon	None	None	13	Standard	None	RE-171
	*76	Bias Resistor	125 Ohms, 1 W , plus or minus 10\%, Carbon	None	None	13	Standard	None	RE-76
	* 77	Bias Resistor	SAME AS 76	-	-	-	---	-	-
	*78	Bias Resistor	2 Units connected in Parailel (Each Unit SAME AS 76)	-	-	-	---	-	-
	SWITCHES - CLASS 24								
	$\begin{array}{r} 13 \\ * 71 \\ \hline \end{array}$	Receiver Freq. Switch Volume Switch	$\begin{aligned} & 3 \text { Gang, } 10 \text { position } \\ & \text { Single Pole, double throw } \end{aligned}$	None   None	None   None	$\begin{aligned} & 17 \\ & 19 \\ & \hline \end{aligned}$	$\begin{aligned} & 22290-\mathrm{H} 3 \mathrm{C} \\ & \text { Type } 21350 \\ & \hline \end{aligned}$	None   None	$\begin{aligned} & S W-68 \\ & S H-11 \end{aligned}$
	VACDOM TUBES - CLASS 38								
	*103	R.F.Amplifier Tube	Pentagrid Mixer Amplifier	None	None	3	Type 6L7	None	
	*104	Mizer Tube	- SARIE AS 103	None	None	3	Type 6L7	None	
	*105	First I.F. Amplifier Tube	SAME AS 103	None	None	3	Type 6L7	None	
	*106	Second I.F. Amplifier Tube	SAME AS 103	-	-	-	---	-	-
	*107	Detector - lst Aud. Amp. Tube	Duo Diode Triode (2nd Detector)	None	None	3	Type 6R7	None	
	*108	Audio Output Tube	Beam Power Amplifier	None	None	3	Type 6V6	None	

FARTS LIST BY SYMBOL DESIGNATION
SECTION 2 - RECEIVER PARTS ONLY - REFERENCE DRAMTNG' T- 1209
CRES 43009 - -32 VOLTS D.C.
CRM-43010=A - 115 VOLTS D.C.


# TABLE NO. II <br> PAFTS LIST BY SYMBOL DESIGYATION <br> SECTION 5 - LINE FILTER PARTS ONLY - REFERENCE DRAITNG T-1209 <br> CRM-53086 - FOR TCP-2 115 VOLTS D.C. 


(RNGA Part Mo. BRD-6 consists of a complete set of 6 brushes ( 2 motor, 2 D.C. Gen. \& 2 A.C. Gen) for the SS-2048 M.G. FA RMCA Part No. BRU-53 consists of a complete sêt of 6 brushes ( 2 motor, 2 D.C. Gen. \& 2 A.C. Gen) for the SS-2049 M.G. PI RMCA Part No. BRU-2 consists of a complete set of 4 brushes ( 2 motor \& 2 A.C. Gen) for SS-1172 Rot. Conv.
fraf RMCA Part Yo. BROOl consists of a complete set of 4 brashes ( 2 motor \& $2 \mathrm{~A} . \mathrm{C}$. Gen) for SS-1173 Rot. Conv.

PARTS LIST $\frac{\text { BY STMBOL ID }}{}$
SECTION 6 - MISCELIANEOUS PARTS OMLT - REPERENCE DEAFINGS (NONE) Continued
CRIM-53085 - FOR TCP-2 32 VOLTS D.C.
CRM-53086 - FOR TCP-2 115 VOLTS D.C.

		SMBBL DESIG.	PUNCTION	DESCRIPTION	NAVY TYPE DESIG.	NAVY DWGS \& SPEC. NO.	MPR	MPRS designation	$\begin{gathered} \text { SPECIAL TOLERANGE } \\ \text { RATNG OR } \\ \text { MODIFICATION } \\ \hline \end{gathered}$	CONTRACTOR'S DRAWING \& PART NUMBER
x	X	* 12	Filter Assembly for Rec. Conv.	Complete Filter Unit for SS-1173 Rot. Conv.	None	None	22	See Descrip.	None	FLI-2
		* 12	Filter Assembly for Rec. Conv.	Complete Filter Unit for SS-1172 Rot. Conv. Hinckley Myers Wrench for removing handset	None	None	22	See Descrip.	None	FLT-1
		* 13	Spline french		None	None	32	"RMCA"	None	T0-5
$\mathbf{x}$		* 14 ¢	Starter Resistor	1.6 Ohm Resistor	None	None	4	2229471G6	None	----
	I	* 146	Starter Resistor	3 Ohm Resistor	None	None	4	2229471G15	None	----
$\mathbf{I}$		* 156	Starter Resistor	.7 Ohm Resistor	None	None	4	222947166	None	---
	I	* 15 ¢	Starter Resistor	2.25 Ohm Resistor	None	None	4	2229471G15	None	--m-
I	I	* 16	Motor Gen. Bearings	Bearings for Motor Gen. SSe2049	None	None	39	8502	None	----
		* 16	Motor Gen. Bearings	Bearings for Motor Gen. SS-2048	None	None	39	8502	None	---*
$\mathbf{x}$		* 17	Kot. Conv. Bearings	Bearings for Rot. Conv. SS-1173	None	None	39	8502	None	----
	$\mathbf{\Sigma}$	* 17	Rot. Conv. Bearings	Bearings for Rot. Conv. SS-1172	None	None	39	8502	None	----
		* 18	Sliders (4)	For Rotating R. F. Inductor	None	None	8	-----	None	---*
		* 19	Plate Leads (5)	With \#91 Alden Caps	None	None	8	----	None	----
		* 20	Plate Leads (2)	With \#12 National Clips	None	None	8	----	None	----
		* 21	Shock Mounts	Lord Type 200-PE-25	None	None	37	200-PR-25	None	---
		* 22	Shock Mounts	Lord Type 200-XPR-75	None	None	37	200-XPH-75	None	-*-*

$\oint$ Symbăl Designations 14 and 15 in this Section are bailt as one unit.

TABLE NO. III
PARTS LIST BI SYMBOL DESIGNATION (To show which items are of identical construction)
NOTE: Following code is used to identify which parts are in
transmitter, receiver, hana telephone assembly, etc.
Symbol designations preceded by (S1) are transmitter parts
S2) are receiver perts
EXAMPLE: (Sl) 4 is same as symbol (S3) are Hand Telephone Ass. Parts
4 , in section I, Table II. (S4) are Remote control parts
(S5) are Line filter parts
(S6) are Miscellaneous parts

NAVY
QUAN. TYPE NO.
SYMBOL DESIGNATION
CAPACITORS - CLASS 48


MOTOR GENERATOR AND ROTARY CONVERTER - CLASS 21


TABLE NO. III
PARTS LIST EY SYMBOL DESIGNATION
(To show which items are of identical construction)

```
NOTE: Following code is used to identify which parts are in
 transmitter, receiver, hand telephone assembly, etc.
 Symbol designations preceded by (Sl) are transmitter parts
 (S2) are receiver parts
 EXAMPLE: (SI) 4 is same as symbol (S3) are Hand Telephone Ass. Parta
 4, in section I, Table II. (S4) are Remote control parts
 (S5) are Line Filter parts
 (S6) are Miscelleneous parts
 NAVY
 QUAN. TYPE NO.
 SYMBOL DESIGNATION
```

                        FUSES - CLASS 28
    | 1 | (S1) 72 (32 V) |
| :---: | :---: |
| - 1 | (S1) $72(115 \mathrm{~V})$ |
| 1 | (S1) 73 (32 V) |
| 1 | (S1) 73 ( 115 V ) |
| 1 | (S1) 74 |
| 1 | (55) 6 (32 y) |
| 1 | (S5) 6 (115 V) |
| 1 | (SI) 75 |
|  | INDICATING LAMPS |
| 2 | (S1) 18, (S2) 81 |

            JACKS AND RECEPTACLES - CLASS 49
            2
                                (S1) 40, (S2) 12
                    RELAYS - CLASS 29
    1
                            (SI) 49
    R. F. TRANSFORMERS - INDUCTORS - CHOKES - GLASS 47

(S1) $\frac{1}{8}$	
3	(S1) $11,20,34$
1	(S1) 13
1	(51) 26
3	(S1) $76,(55) 1,2(32, \nabla)$
3	(S1) 76, (55)1, 2 (115.v)
2	(S1) 77, 78
2	(52) 3, 19
1	(S2) 17
2	(52) 28, 60
1	(52) 61

TABLE NO. III
PARTS LIST BI SYMBOL DESIGNATICN (To show which items are of identical construction)

NOTE: Following code is used to identify which parts are in transmitter, receiver, hand telephone assembly, etc. Symbol designations preceded by (Sl) are transmitter parts (S2) are receiver parts EXAMPLE: (Sl) 4 is same as symbol (S3) are Hand Telephone Ass. Parts 4. in section I, Table II. (S4) are Remote control parts
(S5) are Line filter parts (S6) are Miscellaneous parts

## NAVY

QUAN. TYPENO.
SIMBOL DESIGNATION
TRANSFORMERS AND REACTORS: POWER AND AUDIO - CLASS 30


RESISTORS - CLASS 63


TABLE NO. III
PARTS LIGT BY SIMBOL DESIGNATION
(To show which items are of identical construction)

```
NOTE: Following code is used to identify which parts are in
 transmitter, receiver, hand telephone assembly, etc.
 Symbol designations preceded by (Sl) are transmitter pirts
 (S2) are receiver parts
 EXAMPLE:(SI) 4 is same as symbol
 4, in section I, Table II. (S5) are Remote control par
 NAVY
 QUAN. TIPENO.
 SYMBOL DESIGNATION
```

            RESISTORS - CLASS 63 (Cont'd)
    
SWITCHES--CLASS 24
1

$\square$

1
(S1) 39

1
(S1) 46
1
(51) 48

1
(S1) 71
3
(S1) $92,(\mathrm{~S} 2) 71,(\mathrm{~S} 4) 6$.
1
(S2) 13
2
(S3) 2, (S4) 2.
1
(S5) 3

TABLE NO. III
PARTS LIST BY SYMBOL DESIGNATION
(To show which items are of identical construction)

NOTE: Following code is used to identify which parts are in transmitter, receiver, hand telephone assembly, etc. Symbol designations preceded by (S1) are transmitter parts
EXAMPLE: (Sl) is
(SI) 4 is same as symbol (S3) are Hand Telephone Ass. Parta 4 , in section I, Table II. (S4) are Remote control parts
(S5) are Line filter parts
(S6) are Miscellaneous parts.
NAVY
QUAN. TYPENO.
SYMBOL DESIGNATION

VACUUM TUBES - CLASS 38

5	$(\mathrm{~S} 1) 93,94,95,96,97$	
3	$(\mathrm{~S} 1)$	$98,99,100$
2	$(\mathrm{~S} 1)$	101,102
4	$(\mathrm{~S} 2)$	$103,104,105,106$
1	$(\mathrm{~S} 2)$	107
1	$(\mathrm{~S} 2)$	108
2	$(\mathrm{~S} 2)$	109,111 (111 Not Used in TCP-2)
1	$(\mathrm{~S} 2) 110$	

LOUD SPEAKER - CLASS 49
2
(S2) $64 . \quad(S 4) 8$.

HANDSET
2
(S3) 1. (S4) 1.

## BELL

1
(S4) 9 (Not used in TaP-2)

## FUSE LINKS

(S5) 6a (32 W)
(S5) $6 a(115 \mathrm{~V})$

## MOTOR GENERATOR STARTER - CLASS 21

1
(S1) $86(32 \mathrm{~V})$
1
(S1) 86 (11.5 V)

TABLE NO. III
PARTS LIST KY SYMBJL DESIGNATION (To show which items are of identical construction)


VACUUM TUBE SOCKETS


MOTOR STARTER CONTACTS


BRUSHES


FILTER ASSEMBLY


MOTOR STARTER COIL


## SPARE PARTS LISTIE NO, IV

NOTE: Numbers in parenthesis, preceding symbol designation, refer to corresponding section in Table II. aldMpte: (SI) 4133 skne as symbol 4, in section 1, Table II.

Stabol designation	DESCRIPTION	NAVY TXPE NUMBER	NAVI DWGS \& SPEC. NO.	MFR	MFRS DESIGNATION	SPECIAL TOLERANCE RATING OR MODIFICATION	CONTRACTOR : DRAFING \& PAFT NUMBER

## CAPACITORS - CLASS 48



Table IV - Sheet 1

NOTE: Numbers in parenthesis, preceding symbol
designation, refer to corresponding section
in Table II. EXAMPLE: (Sl) 4 is same as
symbol 4, in section 1 , Table II.


## TABLE NO, IV



NOTE: Numbers in parenthesis, preceding symbol
designation, refer to corresponding section
in Table II. EXAMPL.
symbol 4, in section 1, Table II.


NOTE: Numbers in parenthesis, preceding symbol
designation, refer to corresponding section in table II. EXAMPLE: (SI) 4 is same as symbol 4, in section 1 , Table II.

DESCRIPTION $\quad$| NAVY TYPE |
| :--- |
| NUMBER |

## CHOKES - CLASS 47

1	$(S 1) 76$
1	(S1) 76
1	(S1) $77 \& 78$

(S1) 53
(S1) 53

1
(S1) 54
(S1) 55
(S1) 56
(S1) 57
1 (S2) 63

1 (S2) 72

1
(S1) 58
$(S 2)$
73
(S6) 13
(S6) 18
(S6) 19
(S6) 20
(S6) 21
(S6) 22

2 Sections, each Sect. 20 Turns \#10 AWG
2 Sections, each Sect. 30 Turns \#12 AWC
2 Sections, each Sect. 35 Turns \#22 AWG

## None <br> None

None

None
None
None

11	Type 3230
11	Type 2-22

11 Type 2-22

None None

## TRANSFORMERS - POMER AND AUDIO - CLASS 30

Prim. 18, 20 \& 22 Volts.
Sec. 1 - 6.3, 6.9, 7.5 Volts, 4.65 Amps
Sec. 2 - 6.3 Volts, 7.4 Amps - Total Sec. 82 W No Prim. 68, 75, 82 Volts.
Sec. 1 - 6.3, 6.9, 7.5 Volts, 4.65 Amps
Sec. 2 - 6.3 Volts, 7.4 Amps - Total Sec. 82 iv No
Prim. to match plate to plate load of
two 809 tubes
Sec. to modulate class "C" load of 550 volts,
to match plate to plate load of 6A6 Tube
Sec. to match rrids of two 809 tubes
Prim. to match parallel plates of $6 A 6$ tube
Srim. to match parallel plates of
Sec. to match grids of 6A6 tube
Sec. to match parallel grid of $6 A 6$ tube
Sec. to match parallel grid of 6 A 6 tube
Prim. to match plate circuit
Sec. 1 to match 4 ohm load
Sec. 1 to match 4 ohm load
sec. 2 to math Non
Prim. tapped for 100 , $110,120 \mathrm{~V}, 60$ Cycle
Sec. 1-250-0-250 V, A. ©. for $80 \mathrm{~m} . a$. D.C. load
Sec. 2-5V, 2 Amp
Sec. 3 - Tapned for $6.3 \mathrm{~V}, 3 \mathrm{amp}$ No
REACTORS - CLASS 30
D. C. Resistande 100 Ohms

## MISCEITANEOUS

Spline Wrench for renoving handset Push But. Sliders for Rotating R.F. Inductor
Plate Leads with \#91 Alden Cap
Plate Leads with \#12 National Cap
Shock Mounts
Shock Mounts
Metal Spare Parts Box, 18 X $12 \times 12$

None

None
None
.

None None

None
one

None

None
-

None

None
None
None
None
None
None

10 Type S-8074
None

None

None

None
None
None

None

N ne

None
None

32	"RPICCA"
8	$-\cdots-$
8	-
8	-
37	$200-\mathrm{PH}-25$
37	$200-\mathrm{XPH}-75$
38	

None
None
\| \|! 总

## TABLE NO. V

APPLICABLE COLOR CODES AND MISCELLANEOUS DATA
MODEL TCP AND TCP-1 RADIOTELEPHONE EQUIPMENT

## RMA COLOR CODE FOR RESISTORS

Color	Body	End	Dot
Black			-
Brown	1	0	0
Red	2	1	0
Orange	3	3	00
Yellow	4	4	000
Green	5	5	00000
Blue	6	6	000000
Purple	7	7	0000000
Gray	8	8	00000000
White	9	9	-

Body color denotes first numeral in resistance value.
End color denotes second numeral.
Dot color denotes number of ciphers following first two
numerals.
Gold color bronze end dip indicates $5 \%$ tolerance.
Silver color bronze end dip indicates $10 \%$ tolerance.
Other resistors $20 \%$ tolerance.

## ADDENDUM

## NOTE REGARDING UESTINGHOUSE $0-50 \mathrm{M} . \mathrm{A}$. MILLIAMMETER,

 SYMBOL DESIGNATION 47Model TCP-2 equipments which are furnished with a Westinghouse $0-50 \mathrm{~m} . \mathrm{a}$. milliammeter styly NY-564l8-2, type NX-35, use a one ohm series resistor, Clarostat type $P R-10-B$, tolerance plus or minus one percent. This resistor is mounted directly on the back of the meter. Simpson $0-50 \mathrm{~m} . e$. milliammeters, model 25 , do not require the one ohm series resistor. The internal resistence of the Fiestinghouse meter is half that of the Simpson meter, and, therefore, the use of the one ohm series resistor with Vestinghouse meters permits the same shunts, symbols $41,43,44$ and 50 , to be used with either type of meter.

# TABLE NO. VI 

LIST OF MANUFACTURERS
MODEL TCP APTMOR RADIOTELEPHONE EQUTPMENT

## Reference

Name
Sangamo Electric Company
Allan D. Cardwell Mfg. Co
RCA Manufacturing Co. General Electric Co. Chase-Shawmut Fuse Co. Littelfuse, Inc.
C. P. Clare \& Co.

Radiomarine Corporation
National Company
Kenyon Transformer Co.
Ohmite Manufacturing Co.
International Resistor Co.
Erie Resistor Co.
Continental Carbon Co.
Clarostat Mfg. Co., Inc.
P. R. Mallory

Oak Manufacturing Co.
Communication Products Co.
Hart \& Hageman
Simpson Electric Co.
General Radio Co.
Pioneer Gen-E-Motor Corp.
Radio Condenser Corp. John E. Fast Co.

Cornell Dubilier Electric Corp.
F. W. Sickles Co.

Oxford Tartak Radio Corp.
Western Electric Co.
Bryant Electric Co.
Electronic Mechanics, Inc.
Hugh H. Eby, Inc.
Hinckley-Myers Co.
Sprague Products Co.
Solar Manufacturing Co.
Westinghouse Elec. \& Mfg. Co.
Teleradio Engineering Corp.
Lord Manufacturing Co.
Acme Metal Products Co.
New Departure, Div. Gen. Hotors

## Address

Springfield, Ill.
81 Prospect St., Bklyn, N.Y.
Camden, N. J.
Schnectady, N. Y.
Newberryport, Mass.
4757 N. Ravenswood Ave., Chicago, Ill.
Lawrence \& Lamon Aves., Chicago, Ill.
75 Varick St., New York, N.Y. Malden, Mass.
840 Barry St., New York, N.Y.
4805 Flournoy St.,
Chicago, Ill.
401 N. Broad St., Phila, Pa.
Erie, Pa.
13900 Lorain Avenue,
Cleveland, Ohio.
285 No. 6th St., Bklyn, N.Y.
Indianapolis, Ind.
1260 Clybourn Avenue,
Chicago, Ill.
245 Custer Avenue,
Jersey City, N.J.
Hartford, Conn.
5200 Kinzie St., Chicago, Ill.
30 State St., Cambridge, Mass.
5841 W. Dickens Avenue,
Chicago, Ill.
Camden, N. J.
3123 N. Crawford Avenue, Chicago, Ill.
South Plainfield, N. J.
Springfield, Mass.
3911-29 S: Michigan Ave., Chicago, Ill.
300 Central Ave., Kearny, N.J.
Bridgeport, Conn.
85 Hazel St., Phila, Pa.
4700 Stenton Ave., Phila, Pa.
Jackson, Mich.
North Adams, Mass.
Bayonne, N. J.
40 Wall St., New York, N. Y.
484 Broome St., New York, N.Y.
Erie, Pa.
Dover, N. J.
Bristol, Conn.







ENGINEERING DEPT. ${ }^{\text {M.F.R. }}$

$$
\begin{gathered}
\mathrm{KS}-14 \\
\text { Dote } 6-27-41
\end{gathered}
$$






FIG. I


FIG. 2


FIG. 3


FIG. 4


FIG. 5


FIG. 6


FIG. 7


FIG. 8


FIG. 9


FIG. IO

