GRAPHICS-INTENSIVE
APPLICATIONS
GET A BOOST

Development of the TAAC-1

y 4 ! i" ! he computing engine within a work- on primarily a data sink?
g station performs numerous tasks— 4, Will the add-on execute a small set of
By Nick ENGLAND — . LN
e user interface, networking, database known functions? Or is it a programmable
management, scheduling, operating-system device?

management—as well as applications. A work-
station’s CPU (such as the MC680X0 family or | Once these questions have been addressed, the
Sun’'s new SPARC chip) is carefully designed to | issue of the internal architecture of the add-on
provide rapid context switching and general | processor remains:

computing performance. In some cases, howev-

er, even higher performance is necessary. To in- 1. What performance level is desired?
crease overall workstation performance, manu- 2. Whart flexibility i1s desired?
" facturers often add specialized processors, such 3. How narrowly can the types of expected
as disk controllers, floating-point processors, operations be specified?
. and graphics controllers. These specialized de- 4. What size task is expected?
vices are each responsible for a portion of the 5. Are problems typically compute bound or

overall workstation task, sacrificing generality data-flow bound?
for optimized performance.
Examining the architectures of add-on proces-

Issues in Add-on Processor Design sors developed for particular applications can
Anyone who designs an add-on processor must | lead to the answers to these questions.
face integration issucs: A floating-point accelerator (FPA) accelerates

individual floating-point instructions and accel-
1. How much data passes between the main | erates a limited set of functions or subroytines. In

CPU and the add-on? both of these instances, the workstation CPU
2. How much processing per data item will the | must load the input-data registers and the appro-
add-on handle? priate funcuon code and read back the output

3. Is the data flow bidirectional? Or isthe add- | register.

33 SurTechnology Winter 1988

High-performance graphics are
increasingly important for applications
such as mechanical design and geophysics.

- O «m T Tw e ‘%'mm © O
ca=a —"‘ bl - UM D e

,@5“ Mﬁi

wia wise sim

Architecture

This type of device is characterized by a low
data rate (one or two items in, one item out) and a
small amount of processing per item, No user
programming is provided, and programmed 1/O
increases efficiency. Typically an FPA add-on is
used for tasks such as add, subtract, multiply,
divide, sin, cos, and log.

An array processor is more powerful than an
FPA in two important ways. First, an array proces-
sor can operate with large amounts of data, and it
can execute user-developed routines, in addition
to standard library functions.

Because an array processor operates on se-
quences (arrays) of data, a pipelined arithmetic
unit is used, which means that start-up involves
some overhead, but throughput remains high.
The local memory necessary for this kind of op-
ecation is typically small (4K-16K words), but it
must be fast. This memory is filled or emptied by
a direct memory access (DMA) controller, which
passes blocks of data to and from the main CPU
memory.

This device requires a high data rate (on very
structured data) but requires a small amount of
processing per data item. Array processors are
ideal for use with FFTs, signal processing, and
other vector arithmetic.

Winter 1988

Image and Graphics Processors

An image processor is similar to an array proces-
sor, but it has additional display capability and
excludes floating-point data types. Memories are
larger (1-12 Mbytes) and organized for fast scan-
line access. Random access is available from the
workstation bus, but DMA control is usually
employed to load/dump images. Like the array
processor, this device has a high data rate but low
processing complexity for very structured data.

A graphics processor has many elements in
common with the other add-on processors dis-
cussed above, with an important difference. A
graphics processor receives a small amount of
data and expands it with a large amount of pro-
cessing per data item. For example, drawing a
full-screen rectangle starts with only a handful of
coordinates but results in over a million writes to
the video display memory (frame buffer).

A high-performance 3-D graphics processor
requires the number-crunching power of an array
processor (for transforming input data) and the
video data-rate capability of an image processor.
Unlike those add-ons, a graphics processor acts
as a one-way device, from CPU to screen.

Because of this one-way data flow and the
number of functions a graphics processor per-
forms. it usually demands a multiprocessor archi-
tecture. One relatively general-purpose processor
typically performs command interpretation, a
pipelined processor handles transformation com-
putation, and a specialized address generator
feeds the frame buffer.

Design Criteria for the TAAC-1 Processor
The TAAC-1 is an application accelerator, a
highly programmable device designed to make a
class of applications, not just a few selected func-
tions, run faster. It offers display capability, but
for tasks that require more processing complex-
ity than an image processor or graphics processor
requires. It also has the floating-point perform-
ance of an array processor, but with more flexi-
bility. Thus it offers better performance than a
general-purpose CPU can provide but does not
sacrifice flexibility.

The TAAC-1 was designed for applications
involving spatial or geomertric data sets. These
applications include high-quality graphics, image
processing, and analysis. The design of the
TAAC-1 architecture took into account the pro-
cessing requirements of these applications:

1. Large amounts of data are processed.

2. The data are often in 2-D or 3-D arrays.

3. Both integer and floating point are required.

4. Both vector and scalar processing are re-
quired.

5. Direct display of results is often required.

6. The processing algorithms are constantly

SunTechnology 35.

36

Figure 1.

A floating-point
accelerator
improtes
floating-point
instructions
and a limited
number of
other functions
and
subroutines.

Figure 2.
Array
Drocessors are
useful for FFTs,
signal
processing, and
other vector

INPUT
REGISTERS

ARITHMETIC
UNIT

OUTPUT
REGISTERS

l SEQUENCER

CONTROL/STATUS I

A v

SUN VMEBUS

changing, so ease of programming is impor-
tant.)
7. Interactive processing is required.

These considerations led to the following ca-
pabilities:
1. A large amount of memory (8 megabytes)
2. Enhanced access to 2-D and 3-D arrays of
memory
3. Integer and floating-point processors
4. Vector and random access to memory

arithmetic. 5. Display capability from memory
REGISTER ARITHMETIC
FILE UNITS
——
MICROCODE
PROM/RAM
SMALL
MEMORY —1
CONTROL/STATUS
T
y
. -SUN VMEBUS

SunTechnology

6. Separate instruction memory with C com-
piler

7. Low-latency, nonpipelined design

8. Memory-mapping into VMEbus

In developing a product with these goals in

mind, the TAAC-1 developers were constantly
aware of available technology and marker re-
quirements. In the case of the TAAC-1, two new
technologies were crucial.
Processor technology—Several firms have re-
cently introduced very high-performance 32-bit
processors that are extensions of the bit-slice (or
horizontal) architecture. These processor families
feature high-speed (100 nsec or less cycle time),
floating-point as well as integer parts, large regis-
ter files, and multiple I/O ports. The TAAC-1
uses the Texas Instruments 88XX family of pro-
cessors, selected after hand-simulation of execu-
tion of key algorithms.

The 88XX family has numerous attractive fea-
tures: It is an extension of a known 8-bit family
(74AS888,74AS890). Its power consumption is
low. It has several IC technologies available, with
some parts already moving from AS to CMOS.
Tts performance is excellent, and it has a high data
throughput. The parts are not internally pipelined
and have a horizontal, as opposed to integrated,
structure.

Memory technology—The TAAC-1 uses two
types of memory, video RAM ang static RAM.
Video RAM chips are dual-ported dynamic
RAMs, which have high serial access rates on the
second port. They are typically used to provide-
video rate data for display refresh. The second

Winter 1988

CONTROL/STATUS

ARITHMETIC
UNITS

VIDEO

e DISPLAY

SUN VMEBUS' '

port can also serve as a high bandwidth port for
vector processing. That is, arrays of floating-
point numbers can be accessed for number
crunching, and pixels can be accessed for display.
The memory is divided into two banks, with 400
Mbytes/second vector access to each.

The second element of memory technology
involves high-speed static RAMs (SRAM) for
instruction storage. The TAAC-1 has a 16K x
200-bit instruction memory using 50 SRAM
chips. The SRAMs make possible a very-long-
instruction-word (VLIW) architecture, in which
each word controls multiple functional units.
There are 26 different fields within the 200-bit-
wide instruction.

The combination of VLIW architecture and

nonpipelined low-latency parts provides very
high scalar performance, and the high-memory
bandwidth yields high vector performance.

Processor Architecture

The processor section of the TAAC-1 consists of
multiple functional units connected by multiple
buses. The functions performed by each unit and
the sources and destinations of the buses are
controlled by fields within the 200-bit-wide in-
struction word.

The processor architecture was developed
with two goals in mind. The first was for applica-
tion code to run as fast as possible. The second
was for compiler development to be reasonably
straightforward.

SMALL ARITHMETIC LARGE VIDEO
MEMORY UNITS MEMORY DISPLAY
SEQUENCER
CONTROL/STATUS

SUN VMEBUS BT ST

Winter 1988

Figure 3.
Image
processors are
similar to array
processors but
bhave niore
display
capability and
exclude
floating-point
data 1ypes.

Figure 4.

A graphics
processor
receives a small
amount of data
and expands it
with a large
amount of
processing per
data item.

SunTechnology 37.

Figure 5.

The TAAC-1 was
designed for
applications
needing spatial
or geometric
sels.

Table 1.
Summary of
various
coprocessor
attributes and
criteria

LARGE
MEMORY

ACCESS
| CONTROLLER

RANDOM DATA

VIDEO
DISPLAY

PROCESSOR

INSTRUCTION
RAM

SUN VMEBUS

The TAAC-1’s developers hand-simulated al-
gorithms common in the targeted applications to
refine the architecture. The purpose of this exer-
cise was to reduce inner loops to a single instruc-
tion, thus providing the same performance that
might be expected from dedicated hardware.
Two integer ALUs were included. which meant
one could be dedicated to address calculations.
The integer multiplier/accumulator (MAC) was
included for address computation as well as inte-
ger data processing. This architecture keeps the
free-integer ALU and the floating-point unit sup-
plied with a constant flow of data—an important
design goal.

The lookup tables (LUTs) serve two purposes:

1. A preprogrammed LUT provides seed val-
ues for Newton-Raphson iteration to com-
pute reciprocals (for division by multiplica-
tion) and square roots.

2. A user loadable LUT handles image pro-
cessing or histogram accumulation.

The access processor helps keep data flowing
through the processor. It performs two func-
tions. First, it acts as a smart memory-access con-

troller, ensuring that a programmer is isolated
from any concern over memory timing. The con-
troller portion also reduces access time to a mini-
mum in a simple cache-like fashion, so that ac-
cesses to nearby regions of memory are faster
than arbitrary accesses.

The second function rearranges and controls
physical addresses. This function allows pro-
grams to access memory in four ways.

1. Linear addressing—2M words (32 bits/
word)

2. 2-D addressing—1024 x 2048 pixels (32
bits/pixel)

3. 3-slice addressing—32 256 x 256 slices (32
bits/pixel)

4.3-D dice addressing—128 x 128 x 128
cube (32 bits/voxel)

The last two methods are ideal for 3-D volume
data, such as a series of CT scans or a volume of
seismic data. Included within the 200-bit-wide
instruction word are fields to control loading,
incrementing, and decrementing the X, Y, and Z
addresses used in the different modes.

An additional circuit inhibits writes based on a

DEVICE - 'ORGANIZATION DATA RATE PROCESSING FLEXIBILITY
TFPA D REG —» REG Low SIMPLE Low
ARRAY PROCESSOR™ | ~- MEM —» MEM HIGH SIMPLE HIGH
" IMAGEPROCESSOR -~ |- MEM—+~ MEM+DISPLAY " HIGH . SIMPLE MEDIUM
GRAPHICS PROCESSOR . | - MEM —— DISPLAY LOW ~—» HIGH' COMPLEX Low

comparison of the data to be written with the
previously read value. This technique is useful for
visible-surface-display algorithms.

The TAAC-1's memory uses video RAM:s for
both display and vector processing. An addition-
al 16K x 32 fast static RAM is also included for
stack and global-variable storage.

The data/image memory has a random access
port that is typically controlled by the access
processor described above. This port is 128 bits
wide (multiplexed to 32).

The memory is divided into two banks for
vector-port purposes. Each bank has a 128-bit
bidirectional bus capable of speeds up to 400
Mbytes/second. The memory array consists of
256 64K x 4 video RAMs (although the architec-
ture is designed to accommodate larger memo-
ries in the future). In a typical operation, one bank
of memory feeds the display. while the other
feeds the processor.

An expansion port reserved for future use is
also included in the memory architecture, mean-
ing there are eight 128-bit-wide buses in and out
of the memory.

Display-Controller Architecture

The display controller has two separate sections:
One controls ciming; the other converts digital to
analog to drive a color monitor. The timing con-
troller generates a pixel clock and horizontal and
vertical signals locked to either an internal oscil-
lator or to an external sync signal. The pixel clock
is generated by a phase-locked loop circuit with

Winter 1988

VECTOR FATA CONSTANTS
3 r
REGISTERS+ § | REGISTERS+ FLOATING i

INTEGER INTEGER POINT BARREL LOOKUP

ALU ALU UNIT SHIFTER TABLES

ADDRESSING
RANDOM
DATA

an extremely wide range (10-100 MHz); the loop
is very precise, though (less than 1-ns jitter). The
horizontal and vertical signals and auxiliary sig-
nals, such as video blanking, are generated from
bit maps loaded into RAMs addressed by
counters. This arrangement gives maximum flex-
ibility in providing any timing characteristics.
The digital-to-analog section consists of four

Figure 6.
TAAC-1
processor block
diagram

Figure 7.
Memory block
diagram of the
TAAC-1
accelerator

4 TO |

MULTIPLEXER

BANK A

BANK B
VECTOR PORTS
PROCESSOR
EXPANSION PROCESSOR .
PORT - T
VIDEO
CONTROL

SunTechnology

l FROM MEMORY I

256 x 24 256 x 24
LuT LuT
DACs DACs

OVERLAY
s | CONTROL
4
256 x 24
LUT

EXT. RED

Figure 8.
Video ouiput
block diagram

40. SunTechnology

EXT. GREEN

* EXT.BLUE-

256 x 24 lookup tables driving 12 digiral-to-
analog converters. Four converters are summed
together on each of the red, green, and blue
outputs. Again, this design is intended o give as
much flexibility as possible in a small amount of
circuit-board space. For example, by loading the
color LUTs appropriately, a user can switch from
a single-channel pseudocolor display (256 colors
from a palette of 16.7 million) to a full-color
display with 8 bits each of red, green, and blue,
plus an 8-bit overlay channel. The overlay circuit
functions by turning off the normal display
DACs and turning on those belonging to the
overlay channel. A bit mask allows user selection
of overlay planes. If any enabled bit of a pixel is
on, the overlay takes place for that pixel.
Included in the circuitry is a video switch used
to insert video generated by the TAAC-1 into an
image created elsewhere. For example, it is possi-
ble to create a window on the standard Sun color
frame buffer and display the TAAC-1-generated
image in that window. The video switch circuit
responds to a particular color on the input.
Whenever that color is detected, the video out-
put is switched so that TAAC-1 video, instead of
the externally supplied outpurt, is displayed.
Sun-3 and Sun-4 workstations are ideal envi-
ronments for the TAAC-1. Like the TAAC-1,
their internal VMEbus supports 32-bit data
transfers and a 32-bit address. The TAAC-1 s
entirely memory-mapped into the Sun address
space. Thus, the Sun processor can directly, and

with no driver overhead, read and write image/
data memory, control registers, and LUTs. This
arrangement allows the TAAC-1 to be treated as
more memory.

Programming Tools

Because the TAAC-1 is a user-programmable ac-
celerator, it has software as well as hardware,
tools. The tools fall into four main areas:

1. assembler/compiler
2. simulator

3. debugger

4. libraries

The assembler, C compiler, and linker/loader
were developed by Bit Slice Software of Water-
loo, Ontario. The assembler works with separate
mnemonic definitions for each of the fields with-
in the 200-bit-wide instruction word. The linker
and loader use object modules produced by the
assembler. The C compiler is a full implementa-
tion of the C language and produces assembly
language code as output. Several added func-
tions allow access to hardware features, such as
X, Y, Z addressing, that are not readily expressed
in C. These special functions set fields within the
compiler-generated instructions. Assembly-lan-
guage code can be placed in-line with C code.

Although a compiler cannot produce code
nearly as efficiently as a skilled programmer us-
ing assembly language, having a high-level lan-

Winter 1988

Elldsc L\I“AP“LA [O O N A N N Y E Y WL RV R
necessity. To begin with, it encourages custom-
ers to port code to the accelerator, not rewrite
code. Second, software development proceeds
much faster with such a tool. Developers almost
always develop new library routines, for example,
by testing the algorithm in the standard Sun pro-
gram-development environment, porting that
code (through recompilation) to the TAAC-1,
and then substituting assembly language code in
crucial loops only.

A functional simulator for the hardware tests
the programming tools. This simulator allowed
developers to have diagnostic routines ready and
tested before the hardware was assembled. It also
meant demonstration routines were running very
quickly. For example, a ray-tracing program
(complete with reflection, refraction, and anti-
aliasing) was up and running just a few weeks
after the TAAC-1 developers received bare pro-
totype circuit boards. Because the TAAC-1 was
‘designed to display images, the simulator also
included a bit-map display capability, along with
state information on all registers, buses, etc. The
simulator performs at 1000 instructions/second
(1.00 KIP) on a Sun-3/160, compared to
10,000,000 for the TAAC-1 hardware.

The TAAC-1's debugger allows the display
and manipulation of values in all registers and
memory locations. This process can be seen in a
window on the Sun screen. A programmer can,
for example, single-step or set breakpoints be-
cause the hardware supports this type of opera-
tion. The single-step mode offers single assem-
bly-language steps. The debugger gives symbolic
reference to variables and program breakpoints.
A complementary profiler graphically displays
instruction execution frequency as well as statis-
tical information.

Library routines fall into two classes—those
that run on the Sun CPU and those that run on
the TAAC-1 processor. The first group com-
prises useful initialization and control routines
and can be linked into user programs running on
the Sun. The second group consists of optimized
routines for commonly used functions in various

WP oMY e

mon graphics, imaging. and math functions.
g

Using the TAAC-1

In porting an application or developing a new
one with the TAAC-1 accelerator, it is necessary
to follow two steps. The first is to identify and
break out portions of the application to be
moved to the TAAC-1. This step is necessary
because the TAAC-1 cannot make any system
calls. These separate modules can then be com-
piled with the TAAC-1 compiler.

An application programmer must then modify
the main routines to load data to the TAAC-1
(from memory or disk), start the TAAC por-
tion(s) of the application, and wait for results.
These host routines are compiled with the nor-
mal Sun compiler. At run time, the two sets of
object modules are loaded and executed, one in
the TAAC-1 and one in the Sun CPU.

So far, no multitasking control software has
been written for the TAAC-1, so dedicated sin-
gle-task operation is the rule. This method com-
plies with the general modus operandi for users
needing an accelerator.

Results
Table 2 shows results from some experimental
programs run using the TAAC-1.

Thislevel of performance is generally associat-
ed with hardwired, limited-function hardware
rather than with a fully programmable computa-
tion accelerator such as the TAAC-1.

Acknowledgments

The TAAC-1 architecturc and design were devel-
oped by Tim Van Hook, who also wrote most of
the demonstration and benchmark software. The
TAAC-1 prototype was developed at Trancept
Systems, Inc., by a hardware and software team
including Paul Ramsey, Jamie Blackwell, Mike
King, and Marty McLean. Trancept was ac-
quired by Sun Microsystems, Inc., in May 1987
and forms the basis for Sun's North Carolina
Application Accelerator Group. part of the

Graphics Products Division. -

Ray Tracing
2-D FFT Routines
Adaptive Histogram Equalization

3-D transforms
3-D vectors
3-D polygons

Winter 1988

(Gouraud-shaded and Z-buffered)

Sun-3/160 Sun-3/160+ TAAC
30 min. 30 sec.
8 min, .8 sec.
6 min. 4.5 sec.

Library routines for graphics operations give the following results:

500,000 per second
160,000 per second
30,000 per second

Table 2.
Results from
experimental
programs run
ona Sun-3/160
with and
without the
TAAC-]
accelerator

SunTechnology 41.

THE JOURNAL FOR SUN USERS

Sunlechnolog

PREMIERE ISSUE

THE TAAC-1 ARCI—IITECTURI;

Sun's RISC IMPLEMENTATION

NETWORK SOFTWARE ENVIRONMENT

NEWS PROGRAMMING

WALL STREET LOOKS AT SUN

X INTER
10R8

	2011_07_29_15_03_54.pdf
	2011_07_29_15_05_00.pdf
	2011_07_29_15_05_36.pdf
	2011_07_29_15_06_12.pdf
	2011_07_29_15_06_36.pdf

